
Optimal Resilience in Multi-Tier Supply Chains�

Gene M. Grossman
Princeton University

Elhanan Helpman
Harvard University

Alejandro Sabal
Princeton University

April 7, 2024

Abstract

Forward-looking investments determine the resilience of �rms�supply chains. Such invest-

ments confer externalities on other �rms in the production network. We compare the equilibrium

and optimal allocations in a general equilibrium model with an arbitrary number of vertical pro-

duction tiers. Our model features endogenous investments in protective capabities, endogenous

formation of supply links, and sequential bargaining over quantities and payments between

�rms in successive tiers. We derive policies that implement the �rst-best allocation, allowing for

subsidies to input purchases, network formation, and investments in resilience. The �rst-best

policies depend only on production function parameters of the pertinent tier. When subsidies to

transactions are infeasible, the second-best subsidies for resilience depend on production func-

tion parameters throughout the network, and subsidies are larger upstream than downstream

whenever the bargaining weights of buyers are non-increasing along the chain.
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1 Introduction

A spate of highly publicized supply chain disruptions� owing not only to the COVID-19 pandemic,

but also to natural disasters, cyber-attacks, extreme weather events, logistics bottlenecks, geopolit-

ical tensions, and a host of other causes� have drawn policymakers�attention to the importance of

supply chain resilience. International institutions such as the O.E.C.D (2021) and European Par-

liament (2021) have issued reports with �resilience�or �robustness� in their titles.1 Government

publications, such as the U.K. Department of International Trade (2022) and the U.S. Economic

Report of the President (Council of Economic Advisors, 2022, chapter 6), and international orga-

nizations such as the World Bank (2023), have also addressed these issues. Think tanks, such as

McKinsey Global Institute (Lund et al., 2020) and the Brookings Institution (Iakovou and White,

2020), have o¤ered guidance as well. Yet little formal economic analysis has addressed the topic of

optimal government policy in the face of ongoing risk of supply chain disturbances.

In this paper, we examine the market failures that may generate sub-optimal resilience in

complex supply chains. We seek to capture in a stylized but realistic way one of the canonical

supply-chain forms described in Lund et al. (2020) and the Economic Report of the President

(Council of Economic Advisors, 2022); see Panel B of Figure 6.1 in the latter.2 In what that report

calls �outsourcing with isolated industries,� inputs travel downstream through several or many

tiers until they are ultimately transformed into a consumer good. Lead �rms create the product

designs and oversee speci�cations, at least from their immediate suppliers if not further up the

chain, but they typically do not own or control most of these suppliers. Often, sourcing takes place

sequentially (Yoo et al., 2021) and lead �rms (a.k.a. original equipment manufacturers, or OEMs)

delegate procurement of components to their upstream partners (Guo et al., 2010). These features

of sequential and delegated procurement are described more fully in Mena et al. (2013) and the

references therein.

The McKinsey report describes another salient characteristic of modern supply chains, namely

the large numbers of �rms that are typically involved. They examined lists of publicly-disclosed

suppliers for 668 large manufacturing companies and report that most have hundreds of direct

suppliers, who collectively have thousands of suppliers in the tier above. For example, General

Motors reports 856 direct suppliers and a total of more than 18,000 suppliers to those direct

suppliers. For Apple, those numbers are 638 and more than 7,400, respectively, while for Nestlé

they are 717 and more than 5,000. Moreover, Carvalho and Tahbaz-Salehi (2019) observe that

1Baldwin and Freeman (2022) cite the business literature to distinguish between resilience and robustness. They
describe resilience as �the ability of organizations and supply chains to plan for, respond to, and recover from
disruptions in a timely and cost-e¤ective manner� (Martins de Sá et al., 2019) and robustness as �the ability to
maintain operations during a crisis (Brandon-Jones et al., 2014). In our static framework, we cannot distinguish
between these two concepts, and so we use the term resilience to refer to both of forms of protection from disruptions.

2Baldwin and Venables (2013) coined the terms �snake� and �spider� to distinguish supply chains in which an
input passes through multiple stages with sequencing dictated by engineering considerations from chains that involve
the assembly of parts in no particular order. They focus on the e¤ects of a reduction in international frictions on the
location of production in these alternative types of global supply chains. Our model is something of a hybrid, with a
spider structure at every tier and a snake structure that links the di¤erent tiers.
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input suppliers often sell to several or many lead �rms. For example, Dell and Lenovo share 2,272

direct suppliers among the total of 7,033 serving the former company and the 6,240 serving the

latter (Lund et al., 2020, p.9).

Guided by these observations, we develop a novel, general-equilibrium model of network produc-

tion featuring multi-tier supply chains, arms-length transactions between �rms in di¤erent layers,

many input suppliers for each manufacturer and many customers for each intermediate producer,

and sequential procurement. The supply chains that we envision do not involve o¤-the-shelf inputs

that might be available on anonymous markets. Rather, they are produced and sold to order. In

our model, each producer negotiates the terms of its purchase contract with each of its potential

suppliers. The contracts specify the quantities that will be delivered by the upstream �rms and the

payments that will be made in return. Transactions take place only between �rms that have borne

the prior �xed costs of forming relationships. In this setting, we introduce risks of disruption at

every node along the chains.

More speci�cally, we model an economy with a �nite measure of �rms that produce di¤erentiated

consumer goods and sell them to households in a setting of monopolistic competition. These lead

�rms, which are active in what we denote by tier S; produce their unique varieties using labor and

bundles of di¤erentiated intermediate inputs that they purchase from �rms operating in tier S� 1.
The �rms in tier S � 1, in turn, ful�ll their orders by combining labor and di¤erentiated inputs
procured from their partners in tier S � 2. Firms in tier S � 2 buy inputs from suppliers further

upstream, and so on up the chain. The vertical chain ends with tier 0, where companies produce

inputs from labor alone and sell them to �rms in tier 1.

Since each supplier has many customers and each customer has many suppliers, and since �rms

have overlapping but di¤erent networks, it would be impractical for a grand negotiation to take

place among all �rms in the economy. Instead, we assume cooperative but simultaneous bargaining

among isolated pairs in adjacent tiers. We assume a Nash-in-Nash equilibrium for the bargaining

outcomes between all �rms in some tier s and those in tier s� 1 (Horn and Wolinsky, 1988); that
is, each member of a pair takes as given the outcomes of its negotiations with all of its other

suppliers or buyers, as the case may be. Meanwhile, we impose a sequential structure to the series

of negotiations across tiers, in keeping with a prominent strategy described by Yoo et al. (2021).3

Bargaining begins with negotiations between �rms in tier S and their suppliers in tier S � 1 and
proceeds upstream until �rms in tier 1 sign contracts with �rms in tier 0. All pairs are forward

looking, recognizing that their agreements have implications for their subsequent purchases and

payments both on and o¤ the equilibrium path.

We assume that every �rm faces a positive probability of a catastrophic supply disruption. If a

�rm su¤ers such a disturbance, it will be unable to produce in the period captured by the model.

The risks of disruption depend on actions undertaken by the �rms to foster resilience and may

vary across tiers of the supply chain. A �rm�s pro�ts depend on its own fate and that of all of its

3Yoo et al. (2021) cite the example of Google, which outsources the manufacturing of its built-in streaming
technology Chromecast to Flex, while delegating to Flex the sourcing decisions from second-tier suppliers.
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suppliers and customers.

To capture the private opportunities available to promote supply chain resilience, we grant �rms

two means to moderate their risks. First, �rms may invest in protective capability, which MacDu¢ e

et al. (2021, p.20) de�ne as �the ability of �rms to minimize damage inside facilities, sites and routes

of the supply chain.�Firms might choose to install equipment and erect buildings that are protected

from weather shocks, establish strict health and safety protocols, design facilities that inhibit the

spread of disease, and invest in cybersecurity. Under the heading of protective capability, we would

also include what The Economic Report of the President (2022, p. 212) refers to as investments

in agility, by which they mean �workers�ability to solve problems that ... enabl[es] them to pivot

quickly to alternative products or processes or react to abnormal situations.� In short, we allow

�rms to devote resources to reducing the probability that their own operations will be disrupted.

Second, we allow �rms to invest in network thickness. Each �rm chooses the fraction of suppliers

in the tier immediately above its own with whom it forms relationships. Having multiple suppliers

protects a �rm against the event that some of its partners are unable to produce. The Economic

Report of the President (2022, p. 211) describes a thick network as providing redundancy, that is,

the wherewithal to replace a particular input supplier with another that o¤ers a close substitute.

In our model, where �rms demand a variety of inputs, none of which is critical to its operation,

a thicker network directly boosts productivity in the face of supplier outages. We assume that

developing relationships is costly, as potential suppliers must be identi�ed, vetted, instructed about

speci�cations, and have their prototypes tested for quality.

Our analysis focuses on the �wedges� that emerge between private and social incentives at

di¤erent stages of the supply chain. To identify these wedges, we solve a planner�s direct-control

problem and then ask what instruments the government would need to implement the �rst-best

allocation as a decentralized equilibrium. We do not interpret these �optimal policies�literally as a

prescription for industrial policy. Rather, the optimal policies help us to identify where ine¢ ciencies

can arise in arms-length supply chains, how the extent of these ine¢ ciencies might vary across tiers

that di¤er in their place in the chain, and how the ine¢ ciencies in a given tier re�ect conditions in

other parts of its network.

In general, the government would need three types of policy instruments in our setting to achieve

the �rst best: a set of subsidies or taxes on transactions between �rms in adjacent tiers; a set of

subsidies or taxes to promote or discourage investments in protective capability in di¤erent tiers;

and a set of subsidies or taxes to encourage or impede the formation of supplier relationships.

The �rst-best transaction subsidy for any pair of �rms depends only on the bargain weights and

production parameters for that dyad. The optimal policies to promote �rst-best resilience depend

only on the bargaining weight that a �rm achieves in its negotiations with its customers and on

the size of the optimal subsidy for its sales to those customers.

We �nd that the outcome of each bargaining game yields an intuitive �markup factor�relating

the price paid for inputs by �rms in some tier to the production cost for the �rms in the tier above.

The endogenous markup re�ects the relative bargaining weights of the upstream and downstream
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�rms and the substitutability between the various inputs used by the latter. The optimal transaction

subsidy counteracts the e¤ect of the markup on marginal cost, much as in settings with imperfectly-

competitive markets (rather than bilateral bargaining) for standardized inputs.

The optimal policy to promote or discourage investments in protective capability re�ects two

o¤setting considerations. On the one hand, such investments confer a positive externality to the

clients immediately downstream in a �rm�s network. On the other hand, the subsidy to transac-

tions that is part of the �rst-best policy package in�ates the private pro�tability of investments in

resilience relative to their social value. If bargaining and technology parameters are common across

tiers, then the �rst-best subsidies to resilience do not vary with a good�s place in the supply chains,

except for those at the extreme ends of the chain.4 Alternatively, if goods further downstream

are more di¤erentiated than those upstream and other production and bargaining parameters are

the same, the optimal subsidies for resilience decline as a good proceeds downstream. In any case,

the optimal �subsidy�for investments in protective capabilities by �rms in any middle tier may in

fact be a tax, if the �rst-best subsidy for input purchases by those �rms is large enough. Finally,

we show that the optimal subsidies for network formation are the same as those for protective

capability, despite the fact that �rms have a private incentive to use these investments to improve

their bargaining position vis-à-vis their suppliers and buyers.

It is perhaps surprising that the �rst-best policies do not depend on parameters that describe

a �rm�s entire production network. After all, when a �rm becomes better protected against supply

disruptions or creates a larger network, the greater productivity that results from its presence or

from its greater number of suppliers confers a positive externality to other companies upstream

and downstream in the �rm�s own network, while conferring a negative externality on �rms in

other networks, including those in its own tier. We show, however, that in the presence of optimal

subsidies to counteract the distorting e¤ects of the negotiated markups, these positive and negative

spillovers to �rms that are not direct suppliers cancel in the general equilibrium. What remain are

only the bene�ts that accrue to the �rm�s immediate customers and the wedge between social and

private returns to investment that results from the transaction subsidies.

As we have noted, the �rst-best policies for investments in protective capabilities and network

formation re�ect the fact that the government uses subsidies for input purchases to ensure the

ideal sizes of tier-to-tier transactions. But such subsidies may be politically sensitive, if they

are viewed as handouts to the corporate sector. Given the public focus on resilience, we feel

it is interesting also to examine a second-best setting in which policies to promote protective

capability and thicker networks are used in the absence of subsidies to transactions. We �nd

that the second-best policies di¤er from the �rst-best policies not only in magnitude, but also in

the information that enters into their design. Whereas the �rst-best subsidies to investments in

resilience depend only on technological parameters relevant to the tier being targeted, the second-

best policies re�ect technological parameters that describe the entire supply chain. Speci�cally, the

4Some authors, like Antràs et al. (2012), refer to the place of an industry in the supply chain as the degree of its
�upstreamness.�Our �nding says that, with common production parameters and bargaining weights in all tiers, the
�rst-best subsidy for resilience is independent of this characteristic of an industry.
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second-best subsidies re�ect, among other considerations, an input�s place in the supply chain.

Although our main focus here is on the policy imperative that arises from the risk of supply

disturbances, our paper also contributes a new model to the toolkit on supply chains. Our model is

distinctive in its combination of vertical chains with multiple tiers, endogenous network formation,

endogenous investments in protective capabilities, bilateral and sequential bargaining, and general

equilibrium. Models of endogenous networks such as Ober�eld (2018), Acemoglu and Azar (2020)

and Kopytov et al. (2022), typically assume roundabout production processes, whereas those with

vertical chains such as Ostrovsky (2008), Antràs and Chor (2013) and Johnson and Moxnes (2023)

often take the network as given. Like us, Dhyne et al. (2023) allows for costly investments in

supplier relationships, but in their case the probability of supply failures is completely exogenous

and downstream �rms subsequently purchase inputs from their suppliers at marginal cost.

Many of the supply chains modeled in the literature are fully e¢ cient, either because a lead

�rm organizes all the transactions along the chain (Antràs and de Gortari, 2020), because the

market structure is perfectly competitive (Kopytov et al., 2022; Johnson and Moxnes, 2023), or

because a stability mechanism weeds out ine¢ cient pairings (Ober�eld, 2018). These models are

not suitable for studying the externalities that arise from investments in protective capability and

network thickness, which are the main focus of our analysis.5

This paper shares some of the concerns addressed in Grossman et al. (2023), although the

economic environments in the two papers are very di¤erent. Grossman et al. (2023) use a simple

production structure in which a single critical input is used in �xed proportion to �nal output. Each

�nal producer can purchase its sole input at marginal cost from any supplier with whom it has a

prior relationship that survives a potential supply disruption. The focus of that paper is on whether

�rms have adequate incentive to diversify their sourcing across locations and whether they have

appropriate incentive to source in a safer, high-cost country relative to a riskier, low-cost country.

There are no investments available to reduce the risk of a disruption and no reasons for a �rm to

invest in a thicker network aside from providing insurance against the loss of its critical input. Here,

we are primarily interested in how distortions di¤er upstream versus downstream, which demands

a setting with multi-tier supply chains. We capture the empirical observation that �rms in supply

chains have many suppliers and customers, and we model explicitly the bargaining that determines

quantities and payments. We also endogenize the probabilities of shocks by allowing �rms to invest

in protective capabilities. To handle this richer environment, we abstract from critical inputs and

from shocks that are common to all �rms in a given country.

Our paper also bears some similarity to recent, independent work by Acemoglu and Tahbaz-

Salehi (2024). They too study supply chains with endogenous networks that result from costly

relationship-speci�c investments. In their model, like ours, transactions re�ect negotiations between

isolated pairs of �rms, although there are some important di¤erences in the details of the bargaining

protocols.6 Their supply chains have neither a vertical nor a sequential structure, and they do

5Few models allow for negotiated prices and quantities along the chain. An exception is Alviarez et al. (2023),
but they allow for only two production tiers and have no investments in resilience or network formation.

6Acemoglu and Tahbaz-Salehi (2024) assume that �rms can negotiate contracts with two-part tari¤s that are
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not consider ongoing risks of supply disturbances. Instead, they focus on the macroeconomic

propagation of a single, unanticipated shock and especially on how small shocks can generate large

changes in aggregate output due to the endogenous dissolution of supply relationships. Although

they comment on the ine¢ ciency of equilibrium with endogenous networks, they do not consider

the optimal policy response at di¤erent points along the supply chain.

Like us, Elliot et al. (2022) study supply chain disturbances with idiosyncratic risks of failure.

In their decentralized equilibrium, �rms source inputs from multiple suppliers and invest resources

to strengthen their relationships. However, there are several di¤erences between their setting and

ours. In their model, each �rm has a �nite set of critical inputs (much as in Grossman et al., 2023).

Also, the microfoundations that they provide in their Appendix feature roundabout production,

not vertical relationships. Their formulation does not allow for bilateral bargaining to determine

quantities and prices. Finally, they address the determinants of resilience only in a single supply

chain, because the complexity of their model precludes a general-equilibrium analysis.

There is an interesting parallel between our �ndings concerning second-best policies to promote

resilience and results reported in Liu (2021) on optimal �industrial policies.� Liu introduces ex-

ogenous wedges into a generic model of production networks. When the networks have a vertical

structure, as here, the government�s second-best policy is to provide larger production subsidies to

sectors that are relatively farther upstream.

Finally, it is worth emphasizing that, in this paper, we treat only networks that form in a closed

economy. In contrast, Antràs and Chor (2013), Antràs and de Gortari (2020), Grossman et al.

(2023), Alviarez et al. (2023), Johnson and Moxnes (2023) and Fontaine et al. (2023), among

others, deal with issues of international specialization in global supply chains. We hope to study

optimal policy in the open economy in our future research.

To reiterate, our main contribution in this paper is to provide a rich yet tractable framework

that can be used to study complex investment decisions in supply chains. Our model features an

arbitrary number of tiers, bilateral bargaining, costly supplier relationships, and investments in

protective capability. It captures several realistic externalities that arise in this setting and we

provide a complete characterization of �rst-best and second-best policies for a closed economy.

The remainder of our paper is organized as follows. In the next section, we develop our model

and describe the outcomes of the sequential bargaining and the equilibrium choices of investments

in resilience and network formation. In Section 3, we study the �rst-best allocation, outlining

�rst the solution to the planner�s direct-control problem and then the policies that a benevolent

government can use to implement the optimum as a decentralized equilibrium. We characterize in

turn the optimal subsidies for input transactions, for investments in resilience, and for the formation

of supplier relationships. Section 4 addresses the second-best policy problem that arises when the

contingent on the realized production networks. In e¤ect, all bilateral contracts are renegotiated when any negotiation
breaks down. By allowing for renegotiation, they eliminate any ine¢ ciencies in the sizes of equilibrium transactions
between �rms in an equilibrium network and focus instead on ine¢ ciencies in the extensive margin of the equilibrium
network. In contrast, our analysis admits �double marginalization�that a¤ects both the sizes of transactions and the
incentives for investments in supplier relationships and in protective capabilities. See Lee et al. (2021, sec 4.2) for a
discussion of the empirical literature that established the importance of double marginalization in several industries.
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government cannot subsidize transactions, but can only promote (or discourage) investments in

resilience and network formation. Section 5 concludes.

2 A Model of Multi-Tier Supply Chains

In this section, we develop a general-equilibrium model of vertical supply chains with an arbitrary

number S + 1 of production tiers and risks of supply disruptions throughout. A �rm in the upper-

most tier 0 produces a di¤erentiated intermediate input using labor alone. A �rm in a middle tier

s 2 f1; 2; : : : ; S � 1g produces an intermediate using labor and a bundle of inputs from tier s� 1.
It procures this bundle by bargaining over quantities and payments with the various suppliers in

its production network. A �rm in tier S produces a di¤erentiated consumer good using labor and

a bundle of tier S � 1 inputs. We take the measure of �rms in each tier s as given, and denote this
measure by Ns for s 2 f0; 1; : : : ; Sg.7

2.1 Overview and Notation

As a guide to what follows, we begin with a brief overview of the model and notation. We do so with

reference to two �gures that describe, respectively, the timing in the model and the transactions

between successive tiers.

Figure 1 portrays the timing. First, �rms invest in their protective capabilities and form links

with potential suppliers. We let rs denote the extent of the investments in things like weather-

proo�ng and cybersecurity by �rms in tier s. Such investments reduce the probability 1 � �s (rs)

that the �rm will su¤er a catastrophic supply disruption, with �0s (rs) > 0 and �00s (rs) < 0 for all

s 2 f0; 1; : : : ; Sg. Meanwhile, a typical �rm in tier s, s 2 f1; 2; : : : ; Sg, elects to form relationships

with the fraction �s of the Ns�1 suppliers in tier s� 1 at a cost of k units of labor per relationship.
In the next stage, disruption shocks are realized that disable a fraction 1��s of �rms in tier s,

leaving a measure �sNs of active �rms. In the main text, we shall assume that all surviving �rms in a

tier have the same productivity, which we normalize to equal one. But in the appendix, we develop

a more general version of the model in which surviving �rms draw a Hicks-neutral productivity

parameter from a known probability distribution with density function fs (z), as in Melitz (2003).

We show in the appendix that the policy conclusions for the model with heterogeneous �rms are

identical to those in the model with similar �rms in a given tier.

Firms that survive the supply disturbances move on to the procurement stage. Procurement

takes place sequentially. First, the lead producers negotiate with their surviving suppliers in tier

S � 1. These negotiations take place simultaneously and the negotiants take all other bargaining
outcomes as given. After these end-of-chain bargaining has been concluded, �rms in tier S � 1
bargain simultaneously with suppliers in tier S � 2: This sequential bargaining continues until
�nally �rms in tier 1 sign contracts with �rms in tier 0.

7We could readily allow for free entry at some �xed costs that vary by tier. This would not change any of our
results regarding the �rst best, provided the government can also subsidize or tax entry.
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Figure 1: Sequence of Events and Decisions

Figure 2 depicts the sourcing in more detail. First notice that each buyer has multiple suppliers

and that each supplier has multiple customers. For example, �rm F in tier s supplies inputs to

producers K, L and M in tier s+ 1, while procuring inputs from �rms C and D in tier s� 1. The
network for �rm F overlaps with that of �rm G, but not perfectly so. A �rm in tier s negotiates

a contract with each of its suppliers in tier s � 1 that calls for a quantity of inputs, ms�1, and a

payment of ts�1.8 In the extended model with heterogeneous �rms outlined in the appendix, the

quantities and payments are functions of the productivity of the buyer and the productivity of the

supplier. In any case, the Nash bargaining gives weight �s to the buyer in tier s and the weight

1� �s to the supplier in tier s� 1, as noted in the �gure.9

After all the contracts have been negotiated, the �rms in tier s hire ls units of labor to combine

with their input purchases of ms�1 units from each of their nus � �s�s�1 (rs�1)Ns�1 suppliers to

produce xs units of output. Again, if �rms in tier s are heterogeneous in productivity� as outlined

in the appendix� then ls and xs will be functions of the productivity of the producer, and ms�1

will be a function of both the productivity of the producer and that of the particular supplier.

Finally, the lead producers in tier S hire lS units of labor, produce xS units of output, and sell

8Equivalently, the �rms could negotiate a quantity and a per-unit price. As in other settings with cooperative
bargaining, the �rms set the quantity that is jointly optimal, then share the surplus by choice of payment. It follows
that we could as well specify that �rms negotiate two-part tari¤s, as in Acemoglu and Tahbaz-Salehi (2023), with a
�xed payment and a price per unit, and then they could allow the buyer to choose the quantity unilaterally.

9Although the �gure depicts a setting with discrete numbers of suppliers and customers, this is for illustrative
purposes only. The analysis below treats the case of a continuum of �rms. We solve the bargaining problem with
�the last �rm� by di¤erentiating bene�ts and costs with respect to the measure of �rms and allowing the bargain
at the margin to di¤er from those with the remaining �rms. Each �rm enjoys a small surplus from the marginal
transaction and the Nash bargaining solution applies to these small surpluses, as usual.
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Figure 2: Supplier Contracts and Relationships

their di¤erentiated products in a monopolistically-competitive market at price p; these variables

also depend on �rm productivity in the extended model.

We proceed in the following sections to analyze the stages of the model in reverse order. We

specify the preferences and production technologies and describe the unique equilibrium, beginning

with production of �nal goods, followed by production of inputs, sequential bargaining between

suppliers and buyers, and �nally investments in protective capabilities and relationship links. In

Section 2.10 we spell out the remaining condition for a general equilibrium in an economy with an

inelastic labor supply, L. Throughout, we take the wage rate as numeraire.10

2.2 Production and Sale of Consumer Goods

Consumers hold preferences de�ned over all di¤erentiated �nal goods, with a constant elasticity of

substitution " > 1 between every pair of products. Each of the �S (rS)NS surviving lead producers

faces a demand with constant elasticity �" and a �demand shifter�AP�" that is determined in
general equilibrium.11 With a continuum of �nal producers, each �rm takes the demand shifter as

given.

10As previously stated, we shall assume in the main text that all �rms in a given tier have the same productivity.
The appendix develops the equilibrium conditions for the more general case in which the productivities of surviving
�rms are drawn from tier-speci�c distributions, as in Melitz (2003).
11The demand shifter A = Y=P�", where Y is aggregate real income and P is the aggregate price index of all

di¤erentiated consumer goods.
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The typical �rm produces output according to a Cobb-Douglas production function that com-

bines labor and a bundle of intermediate inputs, with cost shares S and 1 � S , respectively.

The input bundles comprise CES aggregates of the various inputs that �rms have contracted to

purchase, with elasticity of substitution �S > 1 between every pair. We write

xS = l
S
S

"Z
i2
uS�1

mS�1 (i)
�S di

# 1�S
�S

(1)

where mS�1 (i) is the agreed quantity that the �rm buys from supplier i in tier S � 1, 
uS�1 is the
set of surviving suppliers in that tier, and �S � (�S � 1) =�S .12

The market demand implies p = (xS=A)
�1=". The typical �rm has nuS surviving suppliers in tier

S � 1, where nuS = �S�S�1 (rS�1)NS�1 is the product of the number of relationships it has formed

and the survival rate. It has negotiated deals to purchase mS�1 units of a di¤erentiated input from

each of its suppliers and to pay tS�1 to each one. Therefore, the �rm chooses lS at the production

stage to maximize

�S = A
1
" l

S("�1)
"

S (mS�1)
(1�S)("�1)

"
(nuS)

�
1�S
�S

�
( "�1" ) � lS � nuS�1tS�1; (2)

the di¤erence between revenues from the sale of xS units and total production costs.

2.3 Production of Inputs

A �rm in a middle tier s 2 f1; : : : ; S � 1g produces with a Cobb-Douglas technology that combines
labor and input bundles, with shares s and 1� s; i.e.,

xs = l
s
s

"Z
i2
us

ms�1 (i)
�s di

# 1�s
�s

, (3)

where 
us is the set of its surviving suppliers and ms�1 (i) is the quantity purchased from supplier

i. The di¤erentiated inputs in its bundle bear a constant elasticity of substitution �s > 1, where

�s = 1= (1� �s). In equilibrium, the �rms in tier s have agreed to supply ms units of their output

to each of nds customers. The Cobb-Douglas technology dictates how much labor they must hire to

ful�ll their various sales contracts in the light of their various purchase contracts. By inverting the

production function with output xs = ndsms, we �nd

ls =

2664 ndsms�R nus
i=0ms�1 (i)

�s di
� 1�s

�s

3775
1
s

for s 2 f1; : : : ; S � 1g , (4)

12 In the extended model in the appendix that allows for �rm heterogeneity, the right-hand side of (1) is preceeded
by z, an index of the productivity of the particular lead producer. The same is true for the production functions for
goods in middle tiers and in the initial tier, which appear in (3) and (5) below.
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where
R nus
i=0ms�1 (i)

�s di = nus (ms�1)
�s in the symmetric equilibrium that arises when productivities

are homogeneous.

The �rms in tier 0 produce using labor alone, with constant returns to scale. Choosing units so

that one unit of labor generates one unit of output, we have

x0 = l0: (5)

These �rms have agreed to provide m0 units to each of their nd0 clients. In order to ful�ll its

contracts, a typical tier-0 producer must employ a workforce of

l0 = nd0m0: (6)

2.4 Bargaining between a Buyer in Tier 1 and a Supplier in Tier 0

Turning to the procurement stages, we begin with the last set of negotiations, those between buyers

in tier 1 and their suppliers in tier 0. A typical �rm in tier 1 has committed to supply m1 units of

its product to each of its measure nd1 of downstream customers. It takes as given its agreement to

purchase m0 units of inputs from each of a measure nu1 of suppliers other than the (in�nitesimal)

one with whom it now negotiates. The bargaining takes place over a quantity ~m0 and a payment
~t0. If the negotiation fails, the downstream �rm must do without this marginal input. Instead,

it would need to hire a small amount of additional labor to ful�ll its own contracts. The �rm�s

surplus from the relationship with the particular seller amounts to the savings in labor cost less

the extra payment. We denote this surplus by  d1
�
~m0; ~t0

�
.

In the appendix, we calculate the labor-cost savings by di¤erentiating l1 in (4) with respect

to nu1 (the measure of upstream suppliers) and evaluating the derivative at ~m0, the quantity pro-

vided by the marginal supplier when all other suppliers provide m0. Then we take  d1
�
~m0; ~t0

�
=

�@l1 ( ~m0;m0) =@n
u
1 � ~t0.13

Meanwhile, the supplier in tier 0 stands to gain a payment of ~t0 if it manages to strike a deal

with the particular customer, but it would bear an extra labor cost of ~m0 to produce the required

output. The seller�s surplus in a deal calling for ~m0 and ~t0 is simply  u0
�
~m0; ~t0

�
= ~t0 � ~m0.

As usual, the Nash bargain solves

fm0; t0g = arg max
f ~m0;~t0g

 d1
�
~m0; ~t0

��1  u0 � ~m0; ~t0
�1��1 ;

where �1 is the bargaining weight of the buyer and 1��1 is that of the seller. In the appendix, we
13Speci�cally, we �nd

 d1
�
~m0; ~t0

�
=
1� 1
�11

[l1 (m0)]
1�1(1��1)

1�1

�
nd1m1

� ��1
1�1 ~m�1

0 � ~t0.
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show that the �rst-order conditions for this maximization problem imply

m0 =

�
1� 1
1

�1
(nu1)

1��1
�1�1 nd1m1. (7)

Intuitively, the negotiated quantity grows linearly with the volume of output, nd1m1, that the tier-1

�rm has promised to deliver to its downstream customers. The quantity m0 falls with nu1 , because

a larger bundle of inputs into tier-1 production o¤ers more substitutes for any particular one of

them.

We also use the �rst-order conditions to calculate the negotiated payment, t0; and �nd

t0 = �0m0

where

�0 � �1 + (1� �1)
�1

�1 � 1
.

Evidently, the total payment is proportional to the quantity, so �0 can be interpreted as a per-

unit payment. If all of the bargaining power were to rest with the buyer (�1 = 1), the per-unit

payment would be �0 = 1, which is the unit production cost. Alternatively, if all bargaining power

were to rest with the seller (�1 = 0), the per-unit payment would be �0 = �1= (�1 � 1), which is
the monopoly price of a di¤erentiated input when the elasticity of demand is �1. In general, the

per-unit payment by a tier-1 producer is a weighted average of the competitive price of the input

and the monopoly price, with the Nash-bargaining shares serving as weights.

We shall refer to �0 as a markup factor, by analogy to the pricing of di¤erentiated inputs in

an economy with monopolistic competition. Here, it measures the ratio of the negotiated payment

to the supplier�s production cost. The Nash bargaining protocol with a continuum of buyers and

suppliers generates a constant �markup�, which is greater when the seller has more bargaining

power (1� �1 is large) and when the seller�s input substitutes poorly for other inputs used by the
downstream customer (�1 is small).

2.5 Bargaining between a Buyer in Tier 2 and a Supplier in Tier 1

Next consider the negotiation between a typical buyer in tier 2 and a seller in tier 1. The downstream

�rm has committed to supply m2 units to each of its nd2 customers. It takes as given its agreement

to purchase m1 units of inputs from each of a measure nu2 of other suppliers. Using (4) again,

with s = 2, we can calculate the labor savings for the buyer from expanding its set of suppliers

slightly and by purchasing ~m1 units from the marginal seller. The surplus for the downstream �rm,

 d2
�
~m1; ~t1

�
is the di¤erence between the marginal wage savings and the payment to the supplier,

as before.

However, the calculation of the surplus for the seller is slightly di¤erent, because now the �rms

must anticipate subsequent negotiations, in keeping with the requirements for subgame perfection.

The seller in tier 1 stands to gain the payment ~t1 under the proposed contract. In order to ful�ll

12



such a contract, it will choose to hire marginally more labor. But it will also choose to purchase

additional inputs from its other suppliers, which will necessitate a marginally larger bill for its input

bundle. In the appendix, we calculate the marginal wage bill, @l1=@nd1; and and the marginal input

bill, @ (nu1t1) =@n
d
1; and evaluate both at ~m1. We �nd that the extra cost of producing ~m1 units for

a marginal buyer amounts to c1 ~m1, where c1 is de�ned in (A.19) as

c1 = 
�1
1 (1� 1)�(1�1) (nu1)

� 1�1
�1�1 B1 (8)

and

B1 � 1 + (1� 1)�0. (9)

We interpret c1 as the marginal cost to a tier-1 producer of providing an additional unit of its

input to one of its customers. The marginal cost decreases with nu1 , because a more diverse set

of tier-0 inputs makes its own input bundle more productive. The marginal cost increases with

B1, which is a cost-share weighted average of the wage and the anticipated, per-unit payment for

inputs by the tier-1 supplier. Importantly, the marginal cost of producing tier-1 inputs grows with

the markup �0 that the �rm expects to emerge from its negotiations with its own suppliers.

Using the expressions for  d2
�
~m1; ~t1

�
and  u1 = ~t1 � c1 ~m1, we can solve for the Nash bargain,

fm1; t1g = arg max
f ~m1;~t1g

 d2
�
~m1; ~t1

��2  u1 � ~m1; ~t1
�1��2 :

In the appendix, we show that the �rst-order conditions imply

m1 = c
�2
1

�
1� 2
2

�2
(nu2)

2��2
�2�1 nd2m2: (10)

The solution implies that the typical seller in tier 1 delivers a smaller quantity of inputs to a typical

customer when it perceives the marginal cost of producing those inputs to be higher. In other

words, when a tier-1 seller and a tier-2 buyer choose the size of their transaction, they take account

of the per-unit payment for tier-0 inputs that will result from the subsequent negotiations. Apart

from this, (10) has the same form and interpretation as (7).14

We can also calculate the payment implied by Nash bargaining and �nd

t1 = �1c1m1, (11)

where

�1 � �2 + (1� �2)
�2

�2 � 1
.

Here, �1c1 is the per-unit payment that emerges from the negotiations between the tier 1 producer

and the tier 2 producer. It is a (constant) markup �1 over the unit cost c1, where the markup re�ects

14The marginal cost of producing the tier-0 input is c0 = 1.
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the bargaining shares of the two sides and the substitutability of tier-1 inputs in the production

function for x2.

2.6 Bargaining between a Buyer in Tier s (1<s<S) and a Supplier in Tier s-1

We proceed in a similar fashion to solve for all of the remaining Nash bargains between non-extreme

buyers and sellers. A typical supplier in tier s� 1 sells a quantity

ms�1 = c
�s
s�1

�
1� s
s

�s
(nus )

s��s
�s�1 ndsms (12)

to a typical buyer in tier s in exchange for a payment of

ts�1 = �s�1cs�1ms�1, (13)

where �s�1 � �s+(1� �s)
�s�1
�s�1�1 is the markup factor that results from negotiations between the

�rms in tier s� 1 and tier s,

cs�1 =

s�1Y
j=1


�j�

s�1
j+1

j

�
1� j

��(1�j)�s�1j+1
�
nuj
���s�1

j
�j�1 (Bj)

�s�1j+1 (14)

is the unit cost of production for the �rm in tier s � 1, �sj � �si=j (1� i) is the product of the
input shares for all stages between j and s, and Bj � j +

�
1� j

�
�j�1 is de�ned analogously to

B1. We obtain equation (14) from (Axxx) in the appendix by utilizing the recursive structure of

cs:

The negotiated quantityms�1 in (12) depends on the marginal production cost cs�1, the measure

of competing inputs nus ; and the total amount of downstream demand, ndsms, much as for m1. But

now the marginal cost re�ects the diversity in the input bundles and the input-share weighted

averages of the wage and the price of input bundles in all stages further upstream. The per-unit

payment in (13) is the product of the marginal cost and a markup factor, �s�1, that emerges from

the negotiation at hand.

Evidently, the per-unit payment by tier-s producers to their suppliers in tier s� 1 re�ects not
only the division of surplus between the two negotiants, but also the markups they anticipate will

emerge from bargaining further upstream. This outcome is the analog under sequential bargaining

to the double marginalization that results from monopoly pricing of inputs in a market setting.

With sequential bargaining, as with successive rounds of markup pricing, cost premia cumulate

along the supply chain.

2.7 Bargaining between a Lead Firm and a Supplier in Tier S-1

Finally, we come to the negotiation between a typical �nal producer in tier S and a typical one

of its suppliers in tier S � 1. According to the sequencing outlined in Figure 1, these negotiations
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happen �rst, ahead of all the other bargaining. But they take place in anticipation of all that will

follow.

The �nal producer expects to employ labor so as to maximize pro�ts in (2). This gives the usual

markup pricing over marginal cost, as in Dixit and Stiglitz (1977) and elsewhere. Substituting the

resulting employment, lS ; into the expression for pro�ts gives a relationship between pro�ts net of

labor costs, the size and productivity of the �rm�s input bundle, and the total payment to suppliers.

Pro�ts increase with the measure of input suppliers, all else the same, because the CES aggregator

implies a love of input variety.

We can calculate the surplus of a lead producer in its relationship with one of its suppliers by

taking the marginal gain in pro�ts with respect to a marginal seller that provides input quantity

~mS�1 and subtracting from this amount the payment ~tS�1 to that marginal supplier. The marginal

pro�t gain can be computed by di¤erentiating �S with respect to nuS and evaluating the quantity

provided by the marginal �rm at ~mS�1. This gives  dS( ~mS�1; ~tS�1), as reported in (A.41).

As for the seller in this relationship, the calculus is the same as for any other supplier in a

tier s > 1. The potential sale o¤ers a gain of ~tS�1 but at the expense of additional labor costs

and additional input costs. The total additional costs are captured by cS�1 ~mS�1.15 The surplus

is given by  uS�1( ~mS�1; ~tS�1) = ~tS�1 � cS�1 ~mS�1. The Nash bargain, fmS�1; tS�1g maximizes
the geometric average of  dS( ~mS�1; ~tS�1) and  uS�1( ~mS�1; ~tS�1), with �S and 1� �S as geometric
weights.

The �rst-order conditions for the bargaining problem imply

mS�1 = A (cS�1)
S("�1)�"

�
S

1� S

�S("�1) �(1� S) ("� 1)
"

�"
(nuS)

(1�S)("�1)
�S�1 (15)

and

tS�1 = �S�1cS�1mS�1. (16)

The lead producer buys more inputs from a typical supplier when aggregate demand for inputs (as

captured by A) is great, when the perceived marginal cost of producing those inputs, cS�1, is small

and when inputs are productive thanks to their diversity. It negotiates a payment for its inputs

that is a multiple �S�1 = �S + (1� �S)
�S�1
�S�1�1 of the production costs.

2.8 Recursive Solution for Quantities, Payments, and Employment Levels

We can now use the various bargaining solutions to express the input quantities fms�1g, the
payments fts�1g, and the employment levels flsg as functions of the aggregate demand shifter
A and the numbers of active input suppliers per �rm fnusg in every tier. First, we eliminate

from the equations the number of customers for a typical �rm in tier s � 1 using the fact that
every transaction involves one customer and one supplier. The �s�1(rs�1)Ns�1 active �rms in tier

s� 1 each have nds�1 customers, which gives a total of �s�1(rs�1)Ns�1nds�1 customer relationships.
15Here, cS�1 can be calculated using the formula for cs�1 in (14).
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Meanwhile, the �s(rs)Ns active �rms in tier s each have n
u
s suppliers, for a total of �s(rs)Nsn

u
s

supply relationships. Since each customer relationship corresponds to one supply relationship, we

have �s�1(rs�1)Ns�1n
d
s�1 = �s(rs)Nsn

u
s , or

nds�1 =
�s(rs)Ns

�s�1(rs�1)Ns�1
nus .

Now we solve the system of equations for fmsg recursively. We use (16) to solve for mS�1 as a

function of A and the numbers of suppliers per �rm in tiers S and above.16 Then, given any ms

and the numbers of suppliers per �rm in tier s and above, we use (12) to solve for ms�1: Finally,

given m1 and the number of suppliers to �rms in tier 1, we use (7) to solve for m0.

Once we have all of the input quantities, we use (11), (13), and (16) to solve for the payments for

each transaction and the (inverted) production functions (4) and (6) to solve for the employments

levels.17

2.9 Protective Capabilities and Network Thickness

We turn �nally to the initial stage of the game, when �rms choose their protective capabilities

and those in tier 1 and beyond form their supply networks.18 We consider �rst the problem facing

a �rm in tier s > 0 that takes the investment decisions of all other �rms as given. The �rm in

question chooses ~rs and ~�s to maximize its expected net pro�ts
19,

vs (~rs; ~�s) = � (~rs)�s (~�s;�; r)� ~rs � k~�sNS�1

where �s (�) denotes the �rm�s operating pro�ts conditional on avoiding a supply disruption and
~rs + k~�sNs�1 represents the total costs of its investments in resilience.

Notice that, conditional on survival, a �rm�s prior investment in protective capability has no

in�uence on its operating pro�ts. A �rm in any tier s (including s = 0) chooses ~rs to maximize

vs (~rs; ~�s), which gives the �rst-order condition

�0 (~rs)�s (~�s) = 1: (17)

Naturally, investments in protective capabilities are larger when the prospective pro�ts for operating

are greater.

The thickness of a �rm�s network does a¤ect its subsequent operating pro�ts, because it de-

termines the variety of its inputs after supply shocks are realized. This, in turn, determines the

�rm�s productivity and thus the outcomes in its negotiations with suppliers and customers. The

16The number of suppliers per �rm, nus , for all s � S � 1 �gure in the expression for cS�1.
17We also need the �rst-order condition for pro�t maximization by �nal producers to solve for lS :
18A �rm in tier 0 faces a similar problem when choosing its protective capabilities, r0, but it has no relationships

with input suppliers.
19 In the appendix, where we admit heterogeneity in ex-post productivity, vs is the expected value of net pro�ts

over possible realizations of productivity z.
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�rst-order condition for the choice of ~�s can be written as

� (~rs)�
0
s (~�s) = kNS�1. (18)

Clearly, we need to derive �0s (~�s), the marginal e¤ect of a thicker network on a �rm�s operating

pro�ts.

Consider a �rm in a middle tier, i.e., s 2 f1; 2; : : : ; S � 1g. The �rm�s operating pro�ts are
the di¤erence between its receipts from all downstream customers and its total production costs.

Production costs comprise the sum of payments to all suppliers and the �rm�s wage bill. We write

�s (~�s) = ndsts(~�s)� nus (~�s) ts�1 (~�s)� ls (~�s) .

The number of a �rm�s supplier links has no bearing on the size of its customer base, nds , which

is determined by decisions of downstream �rms. But more links means more surviving suppliers

and having more suppliers spells higher productivity. With higher productivity, the �rm achieves

a lower unit cost and sells more to each of its customers. It receives a payment per customer of

ts (~�s) = �s~cs (~�s) ~ms (~�s). Notice that �s � �s+1 +
�
1� �s+1

� �s+1
�s+1�1 depends on the bargaining

weight of the �rm vis-à-vis its customers and the elasticity of substitution between the �rm�s output

and that of other suppliers to the same buyer. Neither of these depends on the thickness of a �rm�s

own supplier network. But ~cs ~ms grows at a constant rate with ~�s, because the �rm negotiates

larger sales to each of its customers, who substitute its product for other inputs to take advantage

of their lower cost.

Meanwhile, the �rm�s total costs rise with ~�s, because the �rm makes larger commitments to its

customers. We �nd that production costs also increase at a constant rate as the number of supplier

links grows.

In the appendix, we show in (Axxx) that

�s (~�s) = Q�s~�
(1�s)(�s+1�1)

�s�1
s ; (19)

where Q�s is a constant from the �rm�s point of view. The elasticity of expected pro�ts with respect

to the �rm�s investment in relationship links is greater when having a more diverse set of inputs

contributes more to productivity, i.e., when inputs are a larger share of production costs for �rms

in tier s (higher 1 � s) and when the inputs used by these �rms are more di¤erentiated (smaller

�s). A given productivity gain is more bene�cial to a �rm in tier s when its competitors produce

inputs that are closer substitutes for its own in the eyes of its downstream customers (higher �s+1).

The power function on the right-hand side of (19) re�ects the CES technology for the input

bundle and the Cobb-Douglas combination of inputs and labor. Indeed, the pro�t elasticity here

is reminiscent of that in settings with monopolistically competitive input markets. Although our

prices and quantities result from sequential bargaining in a complex supply chain, the mechanism

by which input variety raises pro�ts is similar to what happens in a setting with unilateral price
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setting. In a model with monopolistic competition and CES technology, an increase in the number

of inputs makes the inputs more productive, while leaving markups unchanged. With greater

productivity and unchanged prices, a �rm sells more inputs and earns greater pro�ts. Here, �rms

negotiate with each of their customers and then with their suppliers. An increase in productivity

has no e¤ect on the negotiated �markups,�but it does increase the pro�ts that can be shared in

each pairwise negotiation. A more productive �rm negotiates a larger volume of sales with each of

its customers and larger purchases from each of its suppliers, which generates increased pro�ts all

along its supply chain.

We can use a similar procedure to �nd how �S , the operating pro�ts of a �nal producer in (2),

vary with the �rm�s investment in supply links. We need to calculate how revenues and costs vary

with ~�S , which is tedious but straightforward. The calculations yield (see (Axxx))

�S (~�S) = Q�S~�
(1�S)("�1)

�S�1
S : (20)

For interior solutions to the optimization problem in (18), we need that �s (~�s) and �S (~�S) are

concave functions. Concavity of these functions is ensured by the following assumption.

Assumption 1 �1 � �2 � � � � � �S � ".

Assumption 1 says that a good becomes more and more di¤erentiated as it proceeds down the

supply chain. This seems a reasonable assumption about the multi-stage transformation of raw

materials into ever-more-customized inputs and �nally into consumer products.

2.10 General Equilibrium

A labor-market clearing condition closes the model. Labor is used to produce intermediate inputs,

to produce �nal goods, to form supply networks, and to acquire protective capabilities at every level

in the supply chain. Production labor in a typical �rm in tier smust satisfy (4) for s 2 f1; : : : ; S � 1g
and (6) for s = 0. Final producers hire labor lS to maximize operating pro�ts in (2). In addition,

each �rm in tier s employs rs workers to protect against its own supply disruption and each �rm

in tier s 6= 0 employs k�sNs�1 workers to form supply relationships with �rms upstream. There

are �s (rs)Ns active �rms in tier s after the resolution of the supply shocks. Therefore, the general

equilibrium requires
SX
s=0

Nsrs +

SX
s=1

Nsk�sNs�1 +
SX
s=0

�s (rs)Nsls = L.

This condition determines the demand shifter A that appears in (2) and (15); see (A.65) in the

appendix and the discussion there.
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3 First-Best Allocation and Optimal Policy

In this section, we characterize the optimal resource allocation in an economy with ongoing risks

of supply disturbances. Then we identify the �scal policies that would decentralize the �rst best as

an equilibrium outcome. Although the informational requirements for implementing such policies

would be severe, �nding the optimal taxes and subsidies helps us to understand where ine¢ ciencies

can arise in a multi-tier supply chain.

The planner allocates resources to maximize welfare of the representative household. The

constant-elasticity demand function facing each �nal producer derives, as usual, from a CES utility

function,

W =

�Z
j2
S

xS (j)
"�1
" dj

� "
"�1

,

where 
S is the set of di¤erentiated products available to consumers. By symmetry, and with

homogeneous production functions, the planner provides households with equal quantities xS of all

available consumer goods, so we can rewrite the planner�s objective function as

W = (nS)
"

"�1 xS , (21)

where nS = �S (rS)NS is the measure of �nal producers that avoid supply disturbances.
20

With homogeneous production technologies, the symmetry of (3) also dictates that equal quanti-

ties ms be provided to a typical producer in tier s+1 by every one of its input suppliers, considering

the relationships it has formed and the suppliers that survive. A typical �nal producer has nuS =

�S�S�1 (rS�1)NS�1 suppliers. So, (1) implies xS = l
S
S (mS�1)

1�S
�
�S�S�1 (rS�1)NS�1

� 1�S
�S .

Then, substituting for xS in (21), we can write the planner�s problem as choosing all investments in

protective capabilities, frsg, the thickness of all supply networks, f�sg,the input quantities, fmsg ;
and the manufacturing employment levels flsg to maximize

W = [�S (rS)NS ]
"

"�1 l
S
S (mS�1)

1�S
�
�S�S�1 (rS�1)NS�1

� 1�S
�S (22)

subject to the various resource constraints. First, labor employed in all uses should not exceed the

inelastic supply, or
SX
s=0

Nsrs +

SX
s=1

Nsk�sNs�1 +
SX
s=0

�s (rs)Nsls � L. (23)

Second, the ms units of inputs provided to the �s+1 (rs+1)Ns+1 downstream producers by each

of their �s+1�s (rs)Ns suppliers in tier s should not exceed the aggregate amount of tier-s inputs

20As with the market equilibrium, we solve the planner�s problem in the appendix allowing for Hicks-neutral
productivity di¤erences in all tiers of the supply chain.
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produced, or

�
�s+1 (rs+1)Ns+1

� �
�s+1�s (rs)Ns

�
ms � �s (rs)Nsl

s
s (ms�1)

1�s
�
�s�s�1 (rs�1)Ns�1

� 1�s
�s ,

for s 2 1; : : : ; S � 1; (24)

where we have taken into account the Cobb-Douglas technology (3) available to each of the �s (rs)Ns
suppliers. Finally, the planner must not allocate more of the tier-0 input than is produced by the

�0 (r0)N0 surviving �rms, or

[�1 (r1)N1] [�1�0 (r0)N0]m0 � �0 (r0)N0l0; (25)

in the light of the linear technology described by (6).

In the optimal allocation, the constraints are satis�ed with equality. The �rst-order conditions

with respect to labor ls for all s 2 f0; : : : ; Sg and input quantities ms for all s 2 f0; : : : ; S � 1g
dictate that the ratio l�s=n

u
sm

�
s�1 of labor to aggregate inputs employed by a �rm in tier s; s 2

f1; : : : Sg, should equal s
1�s

�s�1
! , where �s denotes the shadow value of a tier s input (the Lagrange

multiplier on constraint (24) or (25), as the case may be), and ! denotes the shadow value of labor

(the Lagrange multiplier on constraint (23)); this is the usual relationship between optimal cost

shares that results from the Cobb-Douglas technology. Also, �0 = !, because the planner can

readily convert one unit of labor into one input of a tier-0 input. Therefore,

l�1
nu1m

�
0

=
1

1� 1
: (26)

where asterisks indicate �rst-best allocations.

Next, we can use the optimal input cost share in tier 1, �0n
u
1m

�
0 = (1� 1) �1nd1m�

1; and the

fact that �0 = !, to derive

l�2
nu2m

�
1

= 
�1
1 (1� 1)�(1�1)

2
1� 2

(nu1)
� 1�1
�1�1 ; (27)

where we have used the ratio of the optimal cost shares in tier 2, the relationship between nd1m
�
1

and (m�
0; l

�
1) implied by the production function (4), and the value of l

�
1=n

u
1m

�
0 that has been solved

in (26). The right-hand side of (27) represents the ratio of the Cobb-Douglas exponents in the

production of tier-2 goods, adjusted for the productivity of the tier-1 inputs that re�ects their

variety. Proceeding similarly and recursively, we can compute the optimal input ratios l�s=n
u
sm

�
s�1

for s 2 f3; : : : ; Sg using �s�1nusm�
s�1 = (1� s) �sndsm�

s and the relationship between output n
d
sm

�
s

and inputs
�
l�s ;m

�
s�1
�
that is implied by (4). This gives us the optimal allocations of labor, fl�sg

S
s=0

and the optimal input quantities, fm�
sg
S�1
s=0 ; for any numbers of active upstream and downstream

relationships,
�
nds
	S�1
s=0

and fnusg
S
s=1.

21

21Using the solutions for l�S and m
�
S�1; we can then recover the optimal sales of a typical �nal good, x

�
S ; from the

production function.
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The �rst-best numbers of supply relationships at every tier result from optimal investments in

protective capabilities and optimal investments in supplier links. In the appendix, we show that

the �rst-order conditions with respect to �s; ls and ms�1 together imply (see (Axxx) and (Axxx))

kNsNs�1��s
L�

PS
j=0Njr

�
j �

PS
j=1 kNj�1Nj�

�
j

=
�Ss

�s � 1
for s = f1; 2; : : : ; S � 1g ; (28)

and
kNSNS�1�

�
S

L�
PS
j=0Njr

�
j �

PS
j=1 kNj�1Nj�

�
j

=
1� S
�S � 1

;

where we recall that �sj � �Si=s (1� i) denotes the product of the input shares for stages s and
beyond. The left-hand side of (28) is the ratio of the aggregate amount of labor optimally used

for forming supplier links to the aggregate labor optimally used in manufacturing inputs and �nal

goods. The right-hand side of (28) re�ects the cumulation of cost shares beginning with tier s and

the elasticity of substitution between inputs used in that tier: The greater are the input shares

downstream and the less substitutable are the inputs used in tier s, the more socially valuable are

links to suppliers in tier s� 1.
As for the optimal investments in protective capabilities, we combine the �rst-order conditions

with respect to rs with the conditions for the optimal quantities, and �nd (see (Axxx) and (Axxx)

in the appendix)

Nsr
�
s

L�
PS
j=0Njr

�
j �

PS
j=1 kNj�1Nj�

�
j

=
�Ss+1

�s+1 � 1
�0s (r

�
s) r

�
s

�s (r
�
s)

for s = f0; 1; : : : ; S � 1g (29)

and

NSr
�
S

L�
PS
j=0Njr

�
j �

PS
j=1 kNj�1Nj�

�
j

=
1

"� 1
�0S (r

�
S) r

�
S

�S
�
r�S
� : (30)

In both (29) and (30), the left-hand side is the ratio of the aggregate labor optimally used to

promote �rm survival in some tier to the aggregate labor optimally used for manufacturing, while

the right-hand side re�ects the social bene�ts of survival at that tier. In all tiers, the bene�ts

increase with the elasticity of survival probability with respect to investment. For intermediate

goods, they also increase with the cost shares of intermediates in all tiers downstream from s and

decrease with the elasticity of substitution between tier-s inputs when used in tier s + 1; �rm

survival is more valuable when inputs comprise a greater share of costs along the supply chain and

when the inputs are imperfect substitutes. The survival of �nal-good producers is socially more

valuable when their outputs are less substitutable in the eyes of consumers.

Finally, we are ready to compare the equilibrium allocation described in Section 2 with the

�rst-best allocation described immediately above. To do so, we introduce three sets of policies that

would allow the planner to implement the �rst-best allocation as a decentralized equilibrium.22

22The private and social incentives for resource allocation diverge on three margins, for ms, rs, and �s. Therefore,
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These policies represent �wedges�between private and social incentives for each use of resources.

We let f� sgS�1s=0 be the sequence of sales policies along the supply chain, where � s denotes the

fraction of the cost of a tier-s input optimally paid by the downstream �rm in tier s+ 1. Clearly,

� s < 1 represents a subsidy to promote sales from tier s to tier s + 1, whereas � s > 1 represents

a tax to discourage such sales. Similarly, we let f�sgSs=0 be the sequence of investment policies,
where �s is the fraction (or multiple) of any investment aimed at avoiding supply disruptions that

is paid by the �rms in tier s. Finally, we let f#sgSs=1 denote the sequence of policies directed at
network formation, where #s denotes the fraction (or multiple) of the cost paid by a typical tier-s

producer when forming links to potential suppliers in tier s� 1. We assume that all subsidies are
�nanced by lump-sum taxation, while tax revenues are rebated similarly. We discuss each of the

wedges in turn.

3.1 Optimal Policies to Promote First-Best Input Transactions

Consider �rst the size of transactions between �rms in tier 0 and tier 1. In the Nash-in-Nash

bargaining solution, a pair of negotiants choose m0 to maximize their joint surplus, taking as given

the quantities in other relationships. When the downstream �rm pays only the fraction �0 of what

the upstream �rm receives, the Nash bargain in (7) must be amended to read

m0 =

�
1� 1
1�0

�1
[nu1 ]

1��1
�1�1 nd1m1:

Then, using the technological constraints in (4) and (6), this implies

l1
nu1m0

=
1

1� 1
�0: (31)

Now compare the left-hand side of (31), which is the equilibrium ratio of labor to intermediate

inputs in a tier-1 �rm, to the optimal ratio expressed in (26). We see that the social planner can

implement the �rst-best transactions between these �rms with ��0 = 1, i.e., by keeping hands o¤.

Why are private and social incentives aligned for these transactions between the farthest-

upstream �rms? With sequential bargaining, the negotiations between tier-0 �rms and tier-1 �rms

are the last to occur. A deal that emerges at this stage does not a¤ect any other transactions.

Since the outcome of this bargaining generates no externalities, what remains is a desire for joint

e¢ ciency in production, which the �rms share with the social planner. Put di¤erently, when the

most upstream �rms bargain, the potential surplus for the pair re�ects the private marginal cost of

producing the tier-0 input. But the private marginal cost mirrors the social marginal cost, because

only labor is used in its production. It follows that the planner need not intervene in these upstream

transactions.

Next, consider the private incentives in a transaction between a tier-1 �rm and a tier-2 �rm.

three policy instruments are necessary and su¢ cient to implement the �rst-best allocation.
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The joint-surplus maximization in the Nash bargaining implies

l2
nu2m1

=
2

1� 2
c1�1; (32)

where we recall that c1 is the marginal cost of a unit of the tier-1 input, including both the labor

cost and the cost of acquiring the tier-0 input bundle. The left-hand side of (32) represents the

ratio of physical quantities of labor to produced inputs in tier-2 production, while the right-hand

side is the product of the ratio of the per-unit (shadow) factor costs and the optimal factor shares

implied by the Cobb-Douglas technology. Using the expression for c1 in (8), we see that the planner

must intervene in these transactions to induce the e¢ cient techniques. The e¢ cient factor ratio

requires B1��1 = 1, or

��1 =
1

1 + (1� 1)�0
< 1.

The optimal subsidy on sales of tier-1 inputs to tier-2 producers reveals a divergence between

private and social incentives. In the absence of any policy, the pair will negotiate based on an

anticipated private marginal cost of producing the tier-1 input that re�ects the markup that will

result subsequently when the tier-1 �rm purchases inputs from its tier-0 suppliers. As we have

noted, 1 + (1� 1)�0 measures how much this anticipated markup distorts the cost of producing
tier-1 inputs. The in�ated private cost would lead the two �rms to transact too little. The optimal

subsidy counteracts this distortion, ensuring that the parties consider the social cost of producing

tier-1 inputs when they set their procurement contract.

The qualitative properties of the optimal subsidy are readily understood. First, the markup

on the tier-0 input depends on the bargaining weights in the negotiations between these suppliers

and their tier-1 buyers. The optimal subsidy to sales by a tier-1 �rm decreases monotonically

with its bargaining weight in its subsequent negotiations with its own suppliers. If �1 = 1, for

example, all of the bargaining power in the negotiation between �rms in tier 0 and tier 1 resides

with the downstream �rm, and then �0 = 1. In this case, ��1 = 1, i.e., there is no subsidy to

transactions between �rms in tier 1 and tier 2. The optimal subsidy 1���1 declines with the elasticity
of substitution between tier-0 inputs in producing tier-1 goods, because greater substitutability

between these inputs weakens the bargaining position of the suppliers and so reduces the markup.

The optimal subsidy falls with the labor share of cost in producing the tier-1 inputs, because a

higher 1 implies that a given markup of input prices has a smaller impact on the marginal cost of

m1.

In Section A.4 of the appendix, we show that23

��s =
1

s + (1� s)�s�1
< 1, for all s 2 f1; : : : ; S � 1g . (33)

The logic for all of the subsidies is similar; in each negotiation, the private parties in tiers s and

23 In fact, we show that (33) gives the optimal subsidy even when �rms in a tier are heterogeneous in their produc-
tivities.
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s+ 1 face a distorted marginal cost of the good they are transacting, because the producer of this

good anticipates paying an elevated price for its own inputs in its subsequent negotiations. At each

stage, the planner o¤sets the anticipated markup, thereby ensuring that the �rms in s and s + 1

choose the e¢ cient quantities.

If all negotiations give similar weight to the relatively upstream �rm and all inputs have similar

production technologies, then all subsidies for tiers s � 1 will be the same. Alternatively, if inputs
become more specialized (and thus strictly less substitutable) as a good proceeds down the supply

chain (so that �s�1 rises with s), and if bargaining weights and labor shares are equal all along the

chain, then the optimal transaction subsidies rise monotonically as we move downstream.

Finally, the planner eschews any subsidy or tax on sales of the �nal good; ��S = 1. Although

the lead producers charge prices in excess of their marginal costs, the markups are common to all

�nal goods and so do not distort any consumption decisions. We summarize in

Proposition 1 To achieve the �rst best, the planner subsidizes sales by all �rms in intermediate
tiers s = f1; 2; : : : ; S � 1g. The optimal subsidy for any good depends only on parameters describ-
ing the technology for producing that good and on the bargaining weight of the producer when it

negotiates with its suppliers. The planner neither subsidizes nor taxes sales by �rms in the extreme

ends of the supply chains.

3.2 Optimal Policies to Promote First-Best Protective Capabilities

Next we compare the private and social incentives for investments in protective capabilities. We

identify two con�icting forces that drive a wedge between the two. On the one hand, a �rm in

tier s garners only the fraction 1 � �s+1 of the joint surplus in its relationship with customers

in tier s + 1. The smaller is this share, the smaller is the �rm�s incentive to invest in protective

capabilities. The planner, in contrast, is concerned with the total surplus, not the division between

the parties. Thus, the surplus sharing tends to generate underinvestment in protective capabilities

by �rms all along the supply chain. On the other hand, the planner applies optimal subsidies to

sales for all s 2 f1; 2; : : : ; S � 1g. These subsidies arti�cially raise pro�tability for the input buyers,
which tends to incentivize investments in protective capabilities beyond their social value.

In keeping with this intuition, we derive a simple expression in (A.123) for the optimal policy

toward investments in protective capabilities by �rms producing inputs, namely

��s =
1� �s+1

��s
for all s 2 f0; 1; : : : ; S � 1g . (34)

First, notice that the optimal policy does not depend on properties of the function �s (r) that

relates the probability of a disruption to the size of the investment. Although the elasticity of

�s (r) a¤ects the planner�s preferred resilience (see (29)), that same elasticity also a¤ects the �rms�

private incentives to avoid disturbances, and in much the same way. Second, the optimal policy

depends only on the bargaining weight for the �rm in its negotiations with its downstream cus-

tomers and on the optimal subsidy on its purchases from its upstream suppliers. Since there is no
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subsidy for purchases of tier-0 inputs (��0 = 1), the planner always wishes to promote investment

in protective capabilities in the most upstream tier of the supply chain (��0 = 1 � �1 < 1). It

might be that other far-upstream inputs are highly substitutable, in which case the transaction

subsidies for these tiers will be small. Then, with ��s close to one, the optimal policy promotes

investment in protective capabilities in other upstream tiers as well. Further downstream, inputs

may become more specialized and less substitutable. If the elasticity of substitution between inputs

falls monotonically (and strictly) as the good moves downstream, and if bargaining weights and

labor shares are similar along the chain, then the optimal subsidies for investment in protective

capabilities will decline monotonically and may eventually turn from subsidy to tax. A tax on

investments in protective capabilities will be indicated when a large markup of input costs must be

o¤set by a large transaction subsidy, which in�ates the incentives for survival greatly.

Turning to the protective capabilities of �nal producers, we �nd in (Axxx) that

��S = 1�
(1� �S) (1� S) ("� 1)

�S � 1
< 1. (35)

Since the sales by �nal producers are not subsidized (or taxed) in the �rst best, all that remains

for the planner is to induce the producers to internalize the positive externalities for consumers

generated by their presence in the marketplace. We have thus established

Proposition 2 To achieve the �rst best, the planner subsidizes investments in protective capabili-
ties at both extreme ends of the supply chain. For intermediate stages, the optimal policy depends

only on parameters describing the technology for producing that good and on the bargaining weight

of the producer when it negotiates with its customers. Under Assumption 1, if bargaining weights

and labor shares are similar along the chain, then the optimal subsidies for investment in resilience

decline monotonically. For some parameter values, it may be optimal to tax investments in protec-

tive capabilities in some tiers to o¤set the excessive private incentive induced by a large transaction

subsidy.

3.3 Optimal Policies to Promote First-Best Linkages

Similar considerations come into play when we consider the optimal policy toward network forma-

tion. On the one hand, �rms in intermediate tier s tend to have insu¢ cient incentive to form links

with upstream suppliers, because they capture only a fraction of the surplus created by such in-

vestments. On the other hand, the sales by �rms in tier s are subsidized, generating private pro�ts

that are not part of social surplus. These extra pro�ts tend to incentivize excess investments in

network formation.

To get a handle on whether subsidies to network formation ought to be bigger or smaller than

those for investments in protective capabilities, let us compare the equilibrium ratio of investments

in the two forms of resilience in the absence of policy with the ratio that maximizes social welfare.

Concerning the private incentives, �rms in tier s will invest more in relationships when the cost share

of inputs is large (s small), when diversity adds more to productivity (�s small), and when their
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own output substitutes more closely for that of their competitors (�s+1 large), which allows them

to steal more sales and pro�ts from rivals following a reduction in cost. None of these parameters

directly a¤ects a �rm�s incentives to invest in protective capabilities, except inasmuch as they a¤ect

the level of operating pro�ts. Using (17), (18) and the relationship between operating pro�ts and

network thickness in (19), we show in (Axxx) that

rs
�s
=

�s � 1
(1� s) (�s+1 � 1)

kNs�1"� (rs) . (36)

where "� (rs) � rs�
0
s (rs) =�s (rs) is the elasticity of the survival probability with respect to the

investment in protective capabilities.

The calculus for the social planner is seemingly di¤erent. The social bene�ts from relationship

links for �rms in tier s increase with the input share in tier s, but also with the input shares in all

tiers downstream from s. And whereas imperfect substitutability of inputs used in tier s (�s small)

raises the marginal social bene�t from having additional suppliers, the substitutability between the

inputs used in tier s + 1 has no bearing on the marginal bene�t, because the planner does not

care about the distribution of pro�ts among �rms in tier s.24 Meanwhile, the social bene�t from

investments in protective capabilities in tier s re�ects the input share in tiers s+1 and beyond and

they are larger when the tier-s inputs are less close substitutes for their customers. Dividing the

�rst-order condition for r�s (29) by that for �
�
s (28), we �nd

r�s
��s

=
�Ss+1
�Ss

�s � 1
�s+1 � 1

kNsNs�1
Ns

"� (r
�
s)

=
�s � 1

(1� s) (�s+1 � 1)
kNs�1"� (r

�
s) . (37)

Notice that the expression on the second row of (37) is identical to that on the right-hand side

of (36). Evidently, in the absence of any policy, the relative private incentives to invest in the

alternative forms of resilience coincide with the social imperative. To preserve this equality in the

presence of �scal policies, the planner must subsidize (or tax) investments in protective capabilities

and investments in network thickness at the same rates. It follows that the �rst-best policies for

investments in relationship links satisfy

#�s =
1� �s+1

��s
for all s 2 f0; 1; : : : ; S � 1g . (38)

The planner must also subsidize link formation by lead producers, with #�S = ��S , or

#�S = 1�
(1� �S) (1� S) ("� 1)

�S � 1
:

24 In other contexts, the private incentive to enter or invest in order to capture pro�ts at the expense of rivals
has been termed the �business-stealing e¤ect,� and it generally tends to cause overinvestment relative to the social
optimum.
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We record

Proposition 3 To achieve the �rst best, the planner levies a subsidy (or tax) on network forma-
tion at intermediate tier s 2 f1; : : : ; S � 1g at the same rate as the optimal subsidy (or tax) on
investments in protective capabilities. The planner subsidizes investments in network formation by

�nal producers at the same rate as investments in protective capabilities.

Admittedly, Proposition 3 relies on special features of our model. First, the Nash-in-Nash

bargaining protocol generates constant �markups� that �rms cannot manipulate by their choice

of network thickness. Second, all �rms in our model are small, so they cannot manipulate the

general equilibrium in a way that improves their bargaining position vis-à-vis their suppliers or

customers. Finally, the CES production technology creates a tight relationship between the pos-

itive externalities from investments in resilience that accrue to downstream customers and the

negative externalities su¤ered by competing �rms due to the loss of sales and pro�ts. The o¤-

setting �consumer-surplus�externality and �business-stealing externality�are familiar from other

contexts with CES technologies (or preferences) and ex ante investments (in market entry or cost

reduction).25

4 Second-Best Policies for Resilience

The salience of recent supply-chain disruptions has directed attention to what the government

might do to promote greater chain resilience. In the current environment, policies that encourage

�rms to invest in reducing the likelihood of disruptions or in diversifying their input sources might

be politically palatable even when direct subsidies to their sales are not. To address this apparent

political reality, we consider in this section a second-best setting in which the government can

subsidize investments in protective capabilities and network formation, but cannot bankroll �rm-

to-�rm transactions along the supply chain.

The government�s problem is the same as before, except that we impose � s = 1 for all s. We

denote by ��s the fraction of the cost of investing in protective capabilities paid by a �rm in tier

s, s 2 f0; 1; : : : ; Sg, in the second-best regime. Similarly, #�s is the share of the cost of network
formation borne by a �rm in tier s, s 2 f1; 2; : : : ; Sg.

In the appendix, we show in (Axxx)-(Axxx) that

��s =
1

J

8>>>>><>>>>>:
1� �s+1

S�1Y
j=s+1

�
j +

�
1� j

�
�j�1

�
9>>>>>=>>>>>;

for s 2 f0; 1; : : : ; S � 1g (39)

25See, for example, Tirole (1988, ch.7), Matsuyama (1995), Dhingra and Morrow (2019), and Matsuyama and
Uschev (2021).
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and

��S =
1

J

�
1� (1� �S) (1� S) ("� 1)

�S � 1

�
, (40)

where J � 1 is a term that captures the aggregate labor-market e¤ects of all the second-best

policies.26

How do we understand the expressions for the second-best subsidies (or taxes) on investments in

protective capabilities? The �rst thing to note is that, in the sequential bargaining equilibrium, the

planner�s objective, W , is multiplicatively separable in a term that depends on frsg and f�sg and a
term that re�ects the sizes of the transaction subsidies, f� sg (see Axxx). This separability follows
from the assumption of CES technologies and preferences, with their multiplicative aggregation

properties. It implies that the planner targets the same investment levels no matter what are the

transaction subsidies.27 The second-best investment levels, fr�sg and f��sg, are the same as the
�rst-best levels, fr�sg and f��sg that are reported in (28), (29) and (30).

However, the private incentives for ex ante investments vary with the transaction policies,

because these policies a¤ect operating pro�ts and thus the �rms�incentives to invest in protective

capabilities and network thickness. To achieve the same investment levels, fr�sg and f��sg ; in a
second-best equilibrium, the planner must impose di¤erent policies than those in (34) and (38).

As in the �rst-best setting, the planner must account for the positive externality associated with

a �rm�s survival as a supplier. The upstream �rm in every relationship captures only the fraction

1��s+1 of the surplus from any investment in protective capabilities, while the remaining fraction

�s+1 accrues to its customers. The second-best subsidies induce �rms to invest based on the full

surplus, rather than their negotiated shares. This externality accounts for the term 1��s+1 in the
numerator of (39), just as it �gures in the �rst-best subsidy rate in (34).

However, the lack of transaction subsidies leaves in place the markups that distort tier-to-tier

transactions. These distortions �gure in the denominator of the term in the curly brackets in

(39). The negotiated payments that exceed production costs reduce pro�tability at every stage; see

(Axxx)-(Axxx). Consequently, they dim the incentives for investments in protective capabilities.

In particular, since Bj = j+
�
1� j

�
�j�1 > 1 for all j, the denominators in the curly brackets all

exceed one and thus contribute to even larger investment subsidies for every tier than are implied

by the surplus sharing. But note that the uncorrected distortions do not a¤ect pro�tability equally

across tiers. Since the negotiated markups cumulate as we move downstream, the upstream �rms

lose more in sales and pro�ts than do their counterparts downstream. This double marginalization

points to the need for larger investment subsidies upstream than downstream.28

26Speci�cally,

J :=
�S1QS�1

j=1

�
j +

�
1� j

�
�j�1

� + S�1X
j=1

j
1� j

�Sj

S�1Y
z=j

1�
z + (1� z)�z�1

� + S .

27 If we can write W (r;�; � ) = ~W (r;�)Cw (� ), then argmaxr;�W (r;�; � ) is independent of � .
28The fact that Bj > 1 for all j implies that the denominator grows monotonically as we add more terms to the

product.
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Overall, the term in curly brackets suggests the desirability of second-best subsidies for invest-

ments in protective capabilities all along the supply chain. However, this conclusion may not be

warranted when we consider the role of J . The term J captures the fact that the cost distortions

collectively depress the demand for manufacturing labor. The resulting fall in the real wage raises

pro�tability and incentives for ex ante investment. The smaller is J , the smaller are the second-

best subsidies, and taxes may be needed in some downstream tiers to induce the socially-e¢ cient

investment levels.

We can readily compare the second-best subsidies at di¤erent points in the supply chain. Let us

begin with second-best policy for investments in tier 0. We see that J�S�1j=1

�
j +

�
1� j

�
�j�1

�
> 1;

i.e., the general-equilibrium e¤ect of the subsidies cannot outweigh the strongest of the direct

e¤ects.29 Since, with s = 0, the numerator in (39) is less than one and the denominator exceeds

one, it follows that

��0 < 1;

i.e., in the second-best regime, it is always optimal for the government to subsidize investments in

protective capabilities in the most upstream tier.

Turning to the relationship between the second-best subsidies in successive tiers, we have from

(39) that
��s�1
��s

=
1� �s
1� �s+1

�
1

s + (1� s)�s�1

�
.

Thus, if �s+1 � �s, then �
�
s�1 < ��s; i.e. if bargaining weights are constant or decreasing along

the supply chain, the second-best subsidies to investments in protective capabilities shrink as we

proceed downstream. In the absence of transaction subsidies, and with �s+1 � �s, the social

imperative for resilience is greater for the upstream �rm in any supplier-buyer relationship, due to

the cumulation of cost distortions.

How do the second-best policies toward investments in protective capabilities compare with

the �rst best? Both policies address the externality that results from rent sharing, as re�ected in

the bargaining weight, 1 � �s+1. Beyond that, they address di¤erent distortions: excess private

pro�tability created by transaction subsidies on the one hand, and contraction of downstream input

demand caused by uncorrected markups on the other. As a result, these subsidies are not directly

comparable. If the denominator of (39) exceeds one, as is mostly likely for �rms that are far

upstream, then ��s < ��s; i.e., the optimal second-best subsidy to resilience must exceed the �rst-

best subsidy at tier s. This is a situation in which the downstream contraction of input demand

caused by the successive markups leads to a substantial underinvestment in resilience in the absence

29Note that

J

S�1Y
j=1

Bj = �S1 +

S�1X
j=1

j
1� j

�Sj

S�1Y
z=j+1

Bz + S

> �S1 +

S�1X
j=1

j
1� j

�Sj + S = 1:
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of policy. If, however, the product in the denominator is su¢ ciently less than one, as it may be

for �rms far downstream, then the second-best subsidy to investments in resilience may be smaller

than the �rst best. Comparing (40) with (35), we see that ��S > ��S ; i.e., the government always

shaves the second-best subsidy to investments in resilience by �nal producers relative to the �rst

best; for these �rms, there are no downstream distortions, but the markups upstream boost their

overall pro�tability, which tends to lead them to overinvest in resilience compared to the incentives

they see in the �rst best.

Turning to the second best policies that target investments in network thickness, we �nd once

again that the second-best policies mirror their counterparts for protective capabilities; i.e., #�s =

��s for all s 2 f1; 2; : : : ; Sg. The explanation is the same as before: �rms are too small to use
their network formation to manipulate their bargaining outcomes and the CES speci�cation of

technologies link the consumer-surplus externalities and the pro�t-stealing externalities generated

by investment.

We summarize our �ndings about the second-best policies in

Proposition 4 For all s � 1, the second-best policies for link formation are equal to those for

investments in protective capabilities. To achieve the second best, the government subsidizes invest-

ments in the most upstream tier. If �s+1 � �s for all s 2 f0; 1; : : : ; S � 1g, the second-best subsidies
decline with s, and may require a tax for the most downstream tiers. The second-best subsidies may

be larger or smaller than their �rst-best counterparts for s < S, but the second-best subsidies (taxes)

for investments by �nal producers are always smaller (larger) than the �rst-best subsidies (taxes).

5 Concluding Remarks

We have identi�ed several sources of ine¢ ciency in the market equilibrium of an economy with

vertical supply chains and endogenous determination of �rms� resilience to supply disturbances.

First, in the absence of government policy, �rms in adjacent tiers of the supply chain will not

choose the socially-optimal volume of input sales. Instead, they will negotiate a contract that

calls for more limited sales, in anticipation that the supplier will face a marked-up cost of its own

inputs when it subsequently bargains with its own suppliers. The wedge between the private and

social incentives for input transactions dictates an optimal subsidy on input sales in all transactions

other than between the �rms that are most upstream. Second, �rms in every tier will not on their

own choose the socially-optimal investments to avoid their own supply disturbances. On the one

hand, these investments tend to be socially insu¢ cient because �rms do not take account that

their survival a¤ects the pro�tability of their downstream customers. On the other hand, these

investments may be socially excessive, if the optimal subsidy for sales creates a large pro�t boost

that comes at the expense of the public �nances. If the bargaining weights and the labor shares

are similar across input tiers but goods become less substitutable as we move down the supply

chain, then the optimal subsidies for investments in protective capabilities will be largest upstream

and decline monotonically, possibly turning to an optimal tax at some point in the chain. Neither
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the optimal subsidies on sales nor the optimal subsidies for investments in protective capabilities

depend on the number of backward links formed by suppliers, and thus the same subsidies apply for

arbitrary networks. Finally, we �nd a wedge between private and social incentives for �rms to form

thick supply networks as a hedge against disturbances that might befall their suppliers. As with

investments in protective capabilities, �rms do not take account that their relationships generate

surplus for downstream partners. When �rms are too small to use the number of their relationships

to manipulate their bargaining position vis-à-vis their suppliers and customers, the optimal policy

toward network formation coincides with the optimal policy to promote or discourage investments

in protective capabilities.

Political realities may limit the scope for subsidies to �rm-to-�rm transactions. If so, the govern-

ment�s choice of whether and how to promote resilience takes on a second-best �avor. We considered

optimal policies for investments in protective capabilities and for the formation of supplier relation-

ships when a government lacks the ability to use subsidies to counteract the distortionary e¤ects of

negotiated input payments. In this setting, optimal policies re�ect markups and input shares in all

transactions downstream from a targeted tier. Survival and supplier relationships are more socially

valuable at upstream stages than at downstream stages due to the cumulative e¤ects of double

marginalization. If bargaining weights and production parameters are common across tiers, then

the second-best subsidies for investments in protective capabilities and in supplier relationships

are larger for producers further upstream. This contrasts with the �rst-best subsidies, which are

constant along the interior of the supply chain when bargaining weights and production parameters

are common to all tiers.

We have modeled vertical supply chains in a stylized but realistic way that captures many of

the features described in the more descriptive literature. Each �rm has multiple suppliers and

multiple customers. Bargaining happens sequentially, beginning with �nal producers that purchase

intermediate goods to use in their production processes and proceeding upstream to suppliers that

seek inputs to ful�ll their procurement contracts. Our bilateral negotiations involve a single buyer

and a single seller, not grand coalitions of producers at various stages. Firms form their networks of

potential suppliers by investing in bilateral relationships. Resilience re�ects deliberate investment.

Yet, as with all models of �rm-to-�rm dealings, the details matter and we recognize that a variety

of alternative assumptions may be worthy of further consideration.

First, we have assumed a particular timing and a particular form of contracts. In our model,

bargaining between upstream and downstream �rms takes place after the realization of the supply

shocks and �rms negotiate only with partners that escape these disturbances. If negotiations were

to occur before any disruptions, this would open a role for contingent contracts. Payments might

be contingent on contract ful�llment, with penalties for failure to deliver. Payments might also be

contingent on the size of an upstream �rm�s investment in resilience (which must be observable

if they can be the target of subsidies). Even more sophisticated contracts might allow payments

contingent on the resilience of a supplier�s own upstream suppliers, or on a �rm�s realized production

costs. Richer contracts would allow �rms to mitigate the ine¢ ciencies of double marginalization
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and to internalize to some extent the externalities that their resilience confers on downstream

customers. However, complex contracts that allow for payments based on decisions throughout

the network might be needed to achieve full e¢ ciency, especially in a second-best setting in which

the government cannot subsidize �rm-to-�rm transactions. So, the externalities that we highlight

would likely still be relevant even in a world with a wider menu of contracts.

Second, if downstream �rms could observe investments in protective capabilities before they

form their supply networks, they might seek out partners that are more likely to deliver. This would

give upstream �rms greater incentive to make such investments, thereby mitigating the externality

associated with shared bene�ts. Even if �rms could not observe investments before creating their

supply chains, they might infer something about such investments if potential suppliers di¤ered in

some observable primitives that would a¤ect their incentives to invest.

Finally, our model currently features only idiosyncratic supply shocks and only one place of

production. An obvious extension would be to consider correlated shocks, based for example on

geography. These would seem particularly important if combined with an extension to global supply

chains; see, e.g., Grossman et al. (2023) for an analysis of country-wide shocks to input supplies in a

two-country model, albeit one with only two tiers of production. The presence of correlated shocks

would interact with the possibilities for contract contingencies, as penalties for breach might di¤er

for failures that are speci�c to a �rm versus those that result from more widespread disturbances

that are outside a single �rm�s control. Analyzing optimal unilateral policy and optimal cooperative

policy toward resilience in global supply chains will require that cross-country di¤erences in wages,

production technologies, and risks of disturbances be taken into account. We regard the modeling

of global supply chains with endogenous networks and resilience as an important direction for future

research.
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Appendix

This appendix provides proofs and technical details for the statements in the main text. While

the main text focuses on the case of homogeneous �rms in every tier, with possible di¤erences

across tiers, the proofs and arguments in this appendix are developed for the more general case in

which within a tier �rms di¤er in Hicks-neutral productivity levels. In particular, it deals with the

case in which all �rms within a tier are similar ex-ante, when they choose rs and �s, s = 0; 1; ::::; S

(except that �rms in tier 0 do not choose �0 because they have no suppliers). In the next stage the

uncertainty is resolve, and a tier-s �rm that survives, which happens with probability 1 � �s (rs),

discovers its productivity level z.

The density of the productivity distribution in tier s is fs (z) for z � 0, so that
R1
0 fs (z) dz = 1.

For an arbitrary function z (z), let

Es [z (z)] :=
Z 1

0
z (z) fs (z) dz

be the expected value of z (z) using the tier-s distribution of z. Using this de�nition, we assume
that Es

�
z�s+1�1

�
< 1 for s 2 f0; 1; :::; S � 1g and that ES

�
z"�1

�
< 1. These assumptions are

obviously satis�ed for distributions with �nite supports, but they may require parameter restrictions

for distributions with unbounded supports. If, for example, the productivity distributions are

Pareto with scale parameter 1 and shape parameter �s in tier s, these assumptions amount to

assuming �s > �s+1 � 1 for s 2 f0; 1; :::; S � 1g and �S > " � 1. In the homogeneous case, which
is the focus of the main text, we assume z = 1 for every �rm in every tier. Therefore in this case

Es
�
z�s+1�1

�
= ES

�
z"�1

�
= 1.

A tier-s �rm with productivity z, s > 0, has the production function

xs(z) = zls(z)
s

�Z nus

0
ms�1 (i)

�s di

� 1�s
�s

; (A.1)

where xs(z) is its output, ls(z) is its employment of labor,ms�1 (i) is the amount of the intermediate

inputs it obtains from supplier i in tier s� 1 and nus is the measure (number) of suppliers this �rm
has in tier s � 1 (and every supplier delivers a distinct product).30 And a �rm in tier 0 with

productivity z has the production function

x0(z) = zl0(z): (A.2)

Note that this production function can be represented by (A.1) with 0 = 1. We will occasionally

use this representation.

30 In order to save on notation, we do not write nus as a function of z. As we show later, every �rm in tier s chooses
the same fraction of suppliers �s in the �rst stage of the game and therefore all tier-s �rms have the same number of
suppliers.
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As we develop the arguments in this appendix, we will point our how various equations look

in the homogeneous case. Section A1 describes solutions to the bargaining games between buyers

and sellers in all adjacent tiers. Equilibrium outcomes are derived in Section A2. Section A3

characterizes the optimal allocation. We then derive �rst-best policies in Section A4 and second-

best policies in Section A5. Finally, we derive the markup factor in Section ??.

A1 Bargaining

Bargaining takes place between surviving �rms after the resolution of uncertainty. Consider a �rm

with productivity z in tier s that bargains with one of its suppliers from tier s� 1. As we will see,
in the bargaining with a supplier the �rm reaches an agreement that depends on the productivity

of the supplier, and there will be no variation in the amount of intermediate inputs it purchases

from suppliers with the same productivity. Therefore in equilibrium

xs(z) = zls(z)
s

�Z 1

0
nus (z; z

0)ms�1
�
z; z0

��s dz0� 1�s
�s

;

where nus (z; z
0) is the measure (number) of the �rm�s suppliers in tier s � 1 with productivity z0

and ms�1 (z; z0) is the amount of the intermediate inputs it buys from each one of them. Because

all �rms choose the same number nus of upstream suppliers in the �rst stage of the game,

nus (z; z
0) = nusfs�1(z

0):

Next, let Ms(z) denote the total quantity of output that a tier s �rm with productivity z has

committed to supply to its tier s+ 1 buyers. Then

Ms(z) :=

Z nds

0
md
s(i)di; (A.3)

where md
s (i) is its commitment to customer i and n

d
s is the number of customers of the �rm. The

CES index of intermediate inputs used by a �rm in tier s with productivity z is de�ned as

Us(z) :=

�Z nus

0
mu
s�1 (i)

�s di

� 1
�s

; (A.4)

where mu
s�1 (i) is the quantity it purchases from supplier i. In an equilibrium with a common

outcome across �rms that bear similar productivity levels, these become

Ms(z) := nds

Z 1

1
ms(z

0; z)fs+1(z
0)dz0 (A.5)

and

Us(z) = nus

�Z 1

0
ms�1(z; z

0)�sfs�1(z
0)dz0

� 1
�s

: (A.6)
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We also de�ne:

Hs := Es
�
z�s+1�1

�
for s 2 f0; 1; :::; S � 1g (A.7)

and

HS := ES
�
z"�1

�
: (A.8)

In the symmetric case, where all �rms have the same productivity z = 1, Hs = 1 for s = 0; 1; :::; S.

In the following subsections, we solve the sequential Nash-in-Nash bargaining games.

A1.1 Bargaining Between a Tier 0 Firm and Tier 1 Firm

First consider the bargaining problem between a �rm in tier 1 with productivity z and a �rm in

tier 0 with productivity q. The objective is to solve for m0(z; q) and t0(z; q) for arbitrary z and q,

where m0(z; q) denotes the quantity sold by a �rm in tier 0 with productivity q to a �rm in tier

1 with productivity z, and t0(z; q) denotes the negotiated payment (transfer) by the buyer to the

seller. To solve this bargaining problem, note that, using x1 (z) =M1 (z), the total labor hired by

a �rm with productivity z in tier 1 is given by:

l1(z) =

�
M1(z)

z

� 1
1

�Z nu1

0
m0 (i)

�s di

� 1�1
�11

=

�
M1(z)

z

� 1
1

U1 (z)
1�1
1 :

Now suppose that supplier i = nu1 has productivity q; i.e., the last supplier in the ordering of

i 2 [0; nu1 ]. Then labor savings from negotiating with this supplier in tier 0 is given by:

@l1(z)

@nu1
= �1� 1

�11

�
M1(z)

z

� 1
1

�Z nu1

0
m0 (i)

�1 di

� 1�1
�11

�1
m0 (n

u
1)
�1 (A.9)

= �1� 1
�11

l1(z)m0 (n
u
1)
�1R nu1 (z)

0 m0 (i)
�s di

= �1� 1
�11

l1(z)
1�1(1��1)

1�1

�
M1(z)

z

�� �1
1�1

m0 (n
u
1)
�1

where the last equality follows from:

Z nu1

0
m0 (i)

�1 di = l1(z)
��11
1�1

�
M1(z)

z

� �1
1�1

:

Therefore, when negotiating with a tier 0 supplier with productivity q, the payo¤ of a tier 1 buyer

with productivity z, net of its outside option, is

 d1
�
~m0(z; q); ~t0(z; q); z

�
:=
1� 1
�11

l1(z)
1�1(1��1)

1�1

�
M1(z)

z

�� �1
1�1

~m0(z; q)
�1 � �0~t0(z; q);
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where ~m0(z; q) := m0 (n
u
1) represents the quantity of sales of supplier i = nu1 , �0 is the fraction of

the cost of these inputs that the buyer bears in view of the government�s policy,31 and ~t0(z; q) is

the payment of the buyer to the supplier.

The net payo¤ of the tier 0 supplier with productivity q is

 u0
�
~m0(z; q); ~t0(z; q); q

�
:= ~t0(z; q)�

~m0(z; q)

q
;

and the solution to the bargaining game is obtained from

max
~m0(z;q);~t0(z;q)

�1 log 
d
1

�
~m0(z; q); ~t0(z; q); z

�
+ (1� �1) log u0

�
~m0(z; q); ~t0(z; q); q

�
: (A.10)

The �rst-order conditions of this problem yield

�1
@ d1

@ ~m0(z; q)

1

 d1
+ (1� �1)

@ u0
@ ~m0(z; q)

1

 u0
= 0;

��1
�0

 d1
+ (1� �1)

1

 u0
= 0:

Together, they yield the following equation for ~m0(z; q):

1� 1
�01

l1(z)
1�1(1��1)

1�1

�
M1(z)

z

�� �1
1�1

~m0(z; q)
�1�1 =

1

q
:

We denote this quantity as m0(z; q) = ~m0(z; q), where

m0(z; q) =

�
1� 1
�01

� 1
1��1

l1(z)
1�1(1��1)
(1�1)(1��1)

�
M1(z)

z

�� �1
(1�1)(1��1)

q�1 : (A.11)

Next note that labor employment can be expressed as

l1(z) =

�
M1(z)

z

� 1
1

U1(z)
1�1
1 :

But given the solution to the input quantities (A.11), the CES aggregator (A.6) for s = 0 becomes

U1(z) = nus

�
1� 1
�01

� 1
1��1

l1(z)
1�1(1��1)
(1�1)(1��1)

�
M1(z)

z

�� �1
(1�1)(1��1)

H
1
�1
0 :

We therefore obtain

l1(z) =

�
�01
1� 1

�1�1
H
� (1��1)(1�1)

�1
0 (nu1)

� (1��1)(1�1)
�1

M1(z)

z
: (A.12)

31Recall that the government may subsidize such purchases (if �0 < 1) or tax them (if �0 > 1).
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Using this employment level together with (A.11) yields:

m0(z; q) = ~C0 (n
u
1)

(1��1)1�1
�1

M1(z)

z
q�1 : (A.13)

where �1 = 1= (1� �1) and

~C0 =

�
1� 1
�01

�1
H

(1��1)1�1
�1

0 (A.14)

As is evident from (A.13), the buyer with productivity z reaches the same agreement on purchases

of intermediate inputs with every supplier whose productivity is q. In the symmetric case z = q = 1

for all �rms, we have H0 = 1 and M1 = nd1m1, and therefore

m0 =

�
1� 1
�01

�1
(nu1)

(1��1)1�1
�1 nd1m1:

This is a recursive equation, stating how m0 depends on m1, which is used in the main text.

We next solve for the transfer. The �rst-order condition with respect to ~t0 in problem (A.10),

together with the de�nitions of the net payo¤s  u0 and  
d
1, yield

�1�0

�
~t0(z; q)�

m0(z; q)

q

�
= (1� �1)

(
1� 1
�11

l1(z)
1�1(1��1)

1�1

�
M1(z)

z

�� �1
1�1

m0(z; q)
�1 � �0~t(z; q)

)
:

It is evident from this equation that the solution to the transfer is the same for every supplier with

productivity q. We denote this amount as t0(z; q) = ~t0(z; q). Combining this equation with (A.12)

and (A.13), we then obtain

�0t0(z; q) = (1� �1)
�
�0
�1
(nu1)

1(1��1)�1
�1 (H0)

1(1��1)�1
�1

�
1� 1
�01

�1
q�1

M1(z)

zq

�
+ �1�0

m0(z; q)

q

= (1� �1)
�
�0
�1

m0(z; q)

q

�
+ �1�0

m0(z; q)

q

= �0
m0(z; q)

q

�
(1� �1)

1

�1
+ �1

�
;

or

t0(z; q) =
m0(z; q)

q

�
�1 + (1� �1)

�1
�1 � 1

�
=
m0(z; q)

q
�0; (A.15)

where

�0 := �1 + (1� �1)
�1

�1 � 1
:
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For future reference note that, using (A.15), the equilibrium net payo¤ of a supplier in tier 0

with productivity q from bargaining with a buyer from tier 1 with productivity z, is

 u0(z; q) = t0(z; q)�
m0(z; q)

q
=
m0(z; q)

q

1� �1
�1 � 1

;

and, using (A.13) and (A.15), aggregate payments of the buyer from tier 1 with productivity z for

its tier 0 inputs are

T1(z) := �0�0n
u
1

Z 1

0

m0(z; q)

q
f0(q)dq = �0�0H0 ~C0 (n

u
1)
� (1�1)(1��1)

�1
M1(z)

z
: (A.16)

A1.1.1 Deviant Outcomes

If a tier-1 �rm with productivity z were to invest in network thickness. an amount that di¤ers

from the equilibrium level, the fraction of suppliers in tier 0 with whom it would have links would

be ~�1, di¤erent from the equilibrium fraction �1 that is chosen in the �rst stage of the game, i.e.,

~�1 6= �1. In this event the formulas from subsection A1.1 still apply, as long as nu1 is interpreted

to be the number of suppliers actually available to this buyer. Alternatively, one can replace nu1
with ~nu1 , where the latter is interpreted to be the number of suppliers available to a tier-1 �rm that

forms ~�1N0 links in the �rst stage of the game. In this case (A.13) implies the transacted quantity

~m0(z; q) = ~C0 (~n
u
1)

(1��1)1�1
�1

M1(z)

z
q�1 : (A.17)

A1.2 Bargaining Between a Tier 1 Firm and a Tier 2 Firm

We now solve the bargaining problem between �rms in the interior of the supply chain. Consider

negotiations between a �rm in tier 2 with productivity z and a �rm in tier 1 with productivity q.

In this bargaining game, the tier-2 �rm saves labor costs when purchasing inputs from the tier-1

�rm. Using the same arguments as in the previous section, we obtain a formula similar to (A.9):

@l2(z)

@nu2
= �1� 2

�22
l2(z)

1�2(1��2)
1�2

�
M2(z)

z

�� �2
1�2

m1 (n
u
2)
�2

Therefore the net payo¤ of the tier-2 �rm (net of its outside option), is

 d2
�
~m1(z; q); ~t1(z; q); z

�
:=
1� 2
�22

l2(z)
1�2(1��2)

1�2

�
M2(z)

z

�� �2
1�2

~m1(z; q)
�2 � �1~t1(z; q):

Calculation of the net payo¤ of a supplier in tier 1 with productivity q is somewhat more

subtle, because a breakdown in negotiations between a tier-2 �rm and a tier-1 �rm will a¤ect the

negotiations that the tier-1 �rm subsequently has with its tier-0 suppliers. On the equilibrium

path, this �rm is committed to supplying M1(q) units to its downstream buyers. Using (A.3) and

(A.12), employment by this supplier is
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l1(q) =

�
�01
1� 1

�1�1
(H0)

� (1��1)(1�1)
�1 (nu1)

� (1��1)(1�1)
�1

M1(q)

q

=

�
�01
1� 1

�1�1
(H0)

� (1��1)(1�1)
�1 (nu1)

� (1��1)(1�1)
�1

1

q

Z nd1

0
md
1(i)di:

Therefore the extra labor cost of supplying ~m1(z; q) = md
1(n

d
1) units of the intermediate input to a

buyer with productivity z is

@l1(q)

@nd1
=

�
�01
1� 1

�1�1
(H0)

� (1��1)(1�1)
�1 (nu1)

� (1��1)(1�1)
�1

1

q
~m1(z; q):

But the tier-1 �rm also anticipates its transfer bill T1 (q) to change if it drops a buyer who purchases

~m1(z; q) units of the intermediate input, because the negotiation outcomes with its own suppliers

depend on M1(q). Using (A.3) and (A.16), we obtain these savings to be

@T1(q)

@nd1
= �0�0H0 ~C0(n

u
1)
� (1�1)(1��1)

�1
~m1(z; q)

q

= �0�0

�
1� 1
�01

�1
H

� (1�1)(1��1)
�1

0 (nu1)
� (1�1)(1��1)

�1
~m1(z; q)

q
:

Subgame perfection requires that we take account of this change in the aggregate payments along

the (o¤-equilibrium) path of a breakdown in negotiations. It follows that the net payo¤ of the tier-1

supplier with productivity q is

 u1
�
~m1(z; q); ~t1(z; q); q

�
: = ~t1(z; q)�

@l1(q)

@nd1
� @T1(q)

@nd1

= ~t1(z; q)� c1
~m1(z; q)

q
:

where

c1 := (n
u
1)
� (1��1)(1�1)

�1 H
� (1�1)(1��1)

�1
0 �0

�
1� 1
�01

�1 1

1� 1
B1 (A.18)

= (nu1)
� (1��1)(1�1)

�1 H
� 1�1
�11

0
~C
1�1
1

0

1

1
B1

and

B1 := �0(1� 1) + 1:

The coe¢ cient c1=q represents the cost of producing a marginal unit of ~m1(z; q) by a �rm with

productivity q. In the homogenous case q = H0 = 1, and in the absence of policies �0 = 1. In this
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case

c1 := (n
u
1)
� (1��1)(1�1)

�1

�
1� 1
1

�1 1

1� 1
B1; (A.19)

which is the expression used in the main text (recalling that �1 = (�1 � 1) =�1).
Now that we have the surplus each side achieves from an agreement calling for ~m1(z; q) and

~t1(z; q), we can derive the Nash bargaining solution

[m1(z; q); t1(z; q)]

= arg max
~m1(z;q);~t1(z;q)

�2 log 
d
2

�
~m1(z; q); ~t1(z; q); z

�
+ (1� �2) log u1

�
~m1(z; q); ~t1(z; q); q

�
:

The �rst-order conditions of this problem yield

1� 2
c1�12

l2(z)
1�2(1��2)

1�2

�
M2(z)

z

�� �2
1�2

m1(z; q)
�2�1 =

1

q
:

We see again that the solution is the same for every supplier with productivity q, and

m1(z; q) =

�
1� 2
c1�12

� 1
1��2

l2(z)
1�2(1��2)
(1�2)(1��2)

�
M2(z)

z

�� �2
(1��2)(1�2)

q
1

1��2 : (A.20)

Note the resemblance between (A.20) and (A.11). Now use

l2(z) =

�
M2(z)

z

� 1
2

U2(z)
2�1
2

together with the de�nition of U2(z) in (A.4) and (A.20), to obtain:

l2(z) =

�
1� 2
c1�12

�2�1
(H1)

� (1��2)(1�2)
�2 (nu2)

� (1��2)(1�2)
�2

M2(z)

z
: (A.21)

Substituting this expression for l2(z) into (A.20) then delivers

m1(z; q) = ~C1(n
u
2)

(1��2)2�1
�2

M2(z)

z
q�2 ; (A.22)

where
~C1 :=

�
1� 2
c1�12

�2
(H1)

(1��2)2�1
�2 :

In the symmetric case z = q = 1 for all �rms, which implies that H1 = 1, M2 = nd2m2 and ~C1 and

c1 are constants. In this case (A.22) yields the recursive equation

m1 = ~C1(n
u
2)

(1��2)2�1
�2 nd2m2

that is used in the main text, with �1 = 1.

Next, we compute the size of the transfers. The �rst-order conditions of the bargaining problem,
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evaluated at ~t1(z; q) = t1(z; q) and ~m1(z; q) = m1(z; q), imply

�1�2

�
t1(z; q)� c1

m1(z; q)

q

�
(A.23)

= (1� �2)
(
1� 2
�22

l2(z)
1�2(1��2)

1�2

�
M2(z)

z

�� �2
1�2

m1(z; q)
�1 � �1t1(z; q)

)
:

Using (A.21) and (A.22), this yields

�1�2

�
t1(z; q)� c1

m1(z; q)

q

�
= (1� �2)

�
�1c1
�2

m1(z; q)

q
� �1t1(z; q)

�
and therefore

t1(z; q) =

�
�2 + (1� �2)

�2
�2 � 1

�
c1
m1(z; q)

q
= �1c1

m1(z; q)

q
: (A.24)

From this equation we obtain aggregate payments to suppliers by a tier-2 �rm with productivity z:

T2(z) = c1�1�1H1 ~C1(n
u
2)
� (1�2)(1��2)

�2
M2(z)

z
: (A.25)

Note the similarity of this equation to (A.16) (where c0 = 1).

A1.2.1 Deviant Outcomes

In this subsection, we derive the bargaining outcome that arises when the upstream �rm with

productivity q has links with fraction ~�1 of suppliers in tier 0, which is di¤erent from the fraction

�1 chosen by the other �rms in tier 1. When this occurs, this deviant �rm has ~nu1 suppliers and the

solution to its bargaining game with a buyer with productivity z in tier 2 yields

~m1(z; q) =

�
1� 2
~c1�12

� 1
1��2

l2(z)
1�2(1��2)
(1�2)(1��2)

�
M2(z)

z

�� �2
(1��2)(1�2)

q�2 (A.26)

where

~c1 = (~n
u
1)
� (1��1)(1�1)

�1 (H0)
� 1�1
�11 ~C

1�1
1

0

1

1
B1:

Equation (A.21) for l2(z) still holds because all other �rms do choose �1 and have the cost parameter

c1. Therefore

~m1(z; q) =

�
1� 2
�12

�2
(~c1)

� 1
1��2 (c1)

� 2(1��2)�1
1��2 (A.27)

� (H1)
2(1��2)�1

�2 (nu2)
2(1��2)�1

�2
M2(z)

z
q�2 :

The �rst-order condition (A.23) still applies, except that the transacted quantity m1(z; q) must be

replaced by the quantity in (A.27) and c1 must be replaced by ~c1. Making these substitutions, we
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obtain the deviant�s transfer

~t1(z; q) = �1~c1
~m1(z; q)

q
:

A1.3 Bargaining Between a Buyer in Tier s < S and a Supplier in Tier s � 1:
Generalization

Now consider bargaining between a buyer with productivity z in an arbitrary tier s and a seller

with productivity q in tier s � 1, for s 2 f2; 3; :::; S � 1g. Using the arguments for s = 2 from the

previous section, the surplus of the downstream buyer is

 ds
�
~ms�1(z; q); ~ts�1(z; q); z

�
=
1� s
�ss

ls(z)
1�s(1��s)

1�s

�
Ms(z)

z

�� �s
1�s

~ms�1(z; q)
�s � � s�1~ts�1(z; q);

and the surplus of the upstream �rm is

 us�1
�
~ms�1(z; q); ~ts�1(z; q); q

�
= ~ts�1(z; q)� cs�1

~ms�1(z; q)

q
; (A.28)

where

cs�1 := (n
u
s�1)

� (1��s�1)(1�s�1)
�s�1 (Hs�2)

� 1�s�1
�s�1s�1 ~C

s�1�1
s�1

s�2
1

s�1
Bs�1 (A.29)

and

Bs�1 := �s�2(1� s�1) + s�1;

�s�2 := �s�1 + (1� �s�1)
�s�1

�s�1 � 1
;

~Cs�2 :=

�
1� s�1

cs�2� s�2s�1

�s�1
(Hs�2)

(1��s�1)s�1�1
�s�1 :

The resulting solutions are

ms�1(z; q) = ~Cs�1(n
u
s )

(1��s)s�1
�s

Ms(z)

z
q�s for s 2 f2; :::; S � 1g; (A.30)

ts�1(z; q) = �s�1cs�1
ms�1(z; q)

q
for s 2 f2; :::; S � 1g; (A.31)

ls(z) =

�
1� s

cs�1� s�1s

�s�1
(Hs�1)

� (1��s)(1�s)
�s (nus )

� (1��s)(1�s)
�s

Ms(z)

z
(A.32)

for s 2 f1; :::; S � 2g;
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Ts(z) = cs�1� s�1�s�1Hs�1 ~Cs�1 (n
u
s )
� (1�s)(1��s)

�s
Ms(z)

z
for s 2 f1; :::; S � 2g: (A.33)

In the symmetric case, where z = q = 1 for all �rms, we have Hs = 1, Ms = ndsm
d
s and ~Cs�1 and

cs�1 are constants. Then (A.30) provides the recursive equation

ms�1(z; q) = ~Cs�1(n
u
s )

(1��s)s�1
�s ndsm

d
s for s 2 f2; :::; S � 1g

that is used in the main text.

A1.3.1 Deviant Outcomes

Following the arguments in section A1.2.1, a deviant supplier with productivity q who formed links

with a fraction ~�s�1 of �rms in the tier above him while all other suppliers in his tier formed links

with the fractions �s�1 of these �rms, reaches an agreement with a buyer with productivity z that

yields

~ms�1(z; q) =

�
1� s
� s�1s

�s
(~cs�1)

� 1
1��s (cs�1)

� s(1��s)�1
1��s (A.34)

� (Hs�1)
s(1��s)�1

�s (nus )
s(1��s)�1

�s
Ms(z)

z
q�s ;

~ts�1 = �s�1~cs�1
~ms�1(z; q)

q
; (A.35)

where

~cs�1 := (~n
u
s�1)

� (1��s�1)(1�s�1)
�s�1 (Hs�2)

� 1�s�1
�s�1s�1 ~C

s�1�1
s�1

s�2
1

s�1
Bs�1 (A.36)

A1.4 Bargaining Between a Tier S Firm and a Tier S � 1 Firm

A �nal goods producer with productivity z faces the inverse demand function:

pS(z) =

�
A

xS(z)

� 1
"

:

Therefore, its operating pro�ts, comprising revenue less production costs, are

�S(z) = A
1
" z

"�1
" lS(z)

S("�1)
"

�Z nuS

0
mS�1 (i)

�S di

� (1�S)("�1)
�S"

� lS(z)� �S�1
Z nuS

0
tS�1 (i) di;
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where lS(z) is labor employment, nuS is the number of its suppliers, mS�1 (i) is the quantity of

purchased from supplier i, and tS�1 (i) is the payment to supplier i. Choosing lS(z) to maximize

pro�ts yields

lS(z) = A
1

"�S("�1) z
"�1

"�S("�1)

�
S("� 1)

"

� "
"�S("�1)

�Z nuS

0
mS�1 (i)

�S di

� (1�S)("�1)
�S ["�S("�1)]

; (A.37)

and the resulting pro�ts are

�S(z) = C�z
"�1

"�S("�1)

�Z nuS

0
mS�1 (i)

�S di

� (1�S)("�1)
�S ["�S("�1)]

� �S�1
Z nuS

0
tS�1 (i) di; (A.38)

where

C� := A
1

"�S("�1)

�
S("� 1)

"

� S("�1)
"�S("�1) "� S("� 1)

"
: (A.39)

Now consider bargaining between this �nal-goods producer and a tier S � 1 supplier of inter-
mediate inputs with productivity q. For the �rm in tier S � 1 the surplus is similar to what we
calculated in the previous section, i.e.,

 uS�1
�
~mS�1(z; q); ~tS�1(z; q); q

�
= ~tS�1(z; q)� cS�1

~mS�1(z; q)

q
;

where

cS�1 := (n
u
S�1)

� (1��S�1)(1�S�1)
�S�1 (HS�2)

� 1�S�1
�S�1S�1 ~C

S�1�1
S�1

S�2
1

S�1
BS�1 (A.40)

and

BS�1 := �S�2(1� S�1) + S�1;

�S�2 := �S�1 + (1� �S�1)
�S�1

�S�1 � 1
;

~CS�2 :=

�
1� S�1

cS�2�S�2S�1

�S�1
(HS�2)

(1��S�1)S�1�1
�S�1 :

For the downstream �rm, not reaching an agreement with a seller with productivity q who supplies

~mS�1(z; q) units of the intermediate input for payment ~tS�1(z; q) would reduce operating pro�ts by

@�S (z) =@n
u
S , evaluated at mS�1 (n

u
S) = ~mS�1(z; q) and tS�1 (nuS) = ~tS�1 (z; q). Therefore, using

(A.38), the buyer�s surplus from the relationship is
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 dS
�
~mS�1(z; q); ~tS�1(z; q); z

�
= Cd�z

"�1
"�S("�1)US (z)

(1�S)("�1)
"�S("�1)

��S ~mS�1(z; q)
�S (A.41)

� �S�1~tS�1(z; q):

where

Cd� := A
1

"�S("�1)

�
S("� 1)

"

� S("�1)
"�S("�1) (1� S)("� 1)

�S"
:

The solution to the bargaining game between these two �rms is

[mS�1(z; q); tS�1(z; q)]

= arg max
~mS�1(z;q);~tS�1(z;q)

f�S log dS
�
~mS�1(z; q); ~tS�1(z; q); z

�
+(1� �S) log uS�1

�
~mS�1(z; q); ~tS�1(z; q); q

�
g:

The �rst-order conditions for this maximization problem are

�S
 dS

@ dS
@ ~mS�1(z; q)

+
1� �S
 uS�1

@ uS�1
@ ~mS�1(z; q)

= 0;

��S�S�1
 dS

+
1� �S
 uS�1

= 0:

They yield

q
1

1��S

�
Cd�

cS�1�S�1

� 1
1��S

�
1

1��S
S z

"�1
(1��S)["�S("�1)]US (z)

(1�S)("�1)
(1��S)["�S("�1)]

� �S
1��S (A.42)

= mS�1(z; q);

and the solution

mS�1(z; q) = q
1

1��S

�
Cd�

cS�1�S�1

� 1
1��S

�
1

1��S
S (A.43)

�z
"�1

(1��S)["�S("�1)]US(z)
(1�S)("�1)(1��S)��S

(1��S)("�1)(1�S)+(1��S) :

Raising both sides of this equation to the power �S , multiplying by nuSfS�1 (q) and integrating over

q, provides a solution for the CES index

US(z) = H
["�S("�1)](1��S)

�S
S�1

�
�S

Cd�
cS�1�S�1

�"�S("�1)
z"�1(nuS)

["�S("�1)](1��S)
�S (A.44)
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Substituting (A.44) into (A.43) then yields32

mS�1(z; q) = CS�1A(n
u
S)

(1��S)(1�S)("�1)
�S

�1
q�Sz"�1; (A.45)

where

CS�1 : = (HS�1)
(1��S)(1�S)("�1)

�S
�1
�

1

cS�1�S�1

�"�S("�1)
(A.46)

�
�

S
1� S

�S("�1) �(1� S)("� 1)
"

�"
:

We now solve for tS�1(z; q). From the �rst-order condition of the maximization problem we

have

�S�S�1

�
tS�1(z; q)� cS�1

mS�1(z; q)

q

�
= (1� �S)

�
Cd�z

"�1
"�S("�1)US (z)

(1�S)("�1)
"�S("�1)

��S mS�1(z; q)
�S � �S�1tS�1(z; q)

�
Using (A.44) and (A.45) we obtain

Cd�z
"�1

"�S("�1)US (z)
(1�S)("�1)
"�S("�1)

��S mS�1(z; q)
�S

=
1

�S
Az"�1(nuS)

(1�S)("�1)(1��S)
�S

�1
(HS�1)

(1�S)("�1)(1��S)
�S

�1
�

1

cS�1�S�1

�"�S("�1)
cS�1�S�1

�
�

S
1� S

�S("�1) �(1� S)("� 1)
"

�"
q�S�1

= cS�1
mS�1(z; q)

q
�S�1

1

�S
:

Therefore

tS�1(z; q) = cS�1
mS�1(z; q)

q

�
�S + (1� �S)

�S
�S � 1

�
= cS�1�S�1

mS�1(z; q)

q
(A.47)

and
32 In the symmetric case, where z = q = 1, this equation yields

mS�1 = CS�1A(n
u
S)

(1��S)(1�S)("�1)
�S

�1
;

where CS is a constant.
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TS(z) = AcS�1�S�1�S�1CS�1HS�1(n
u
S)

(1��S)(1�S)("�1)
�S z"�1: (A.48)

This completes the solutions of the bargaining games in all tiers.

A1.4.1 Deviant Outcomes

Consider again a deviant �rm in tier S�1 with productivity q that has chosen ~�S�1 while all other
�rms in its tier have chosen �S�1. For such a �rm condition (A.42) is satis�ed, except that cS�1
and mS�1(z; q) have to be replaced with ~cS�1 and ~mS�1(z; q)

q
1

1��S

�
Cd�

~cS�1�S�1

� 1
1��S

�
1

1��S
S z

"�1
(1��S)["�S("�1)]US (z)

(1�S)("�1)
(1��S)["�S("�1)]

� �S
1��S (A.49)

= ~mS�1(z; q);

where

~cS�1 := (~n
u
S�1)

� (1��S�1)(1�S�1)
�S�1 (HS�2)

� 1�S�1
�S�1S�1 ~C

S�1�1
S�1

S�2
1

S�1
BS�1:

The formula for ~cS�1 is the same as for cS�1, except that ~nuS�1 replaces n
u
S�1, i.e., the actual

number of suppliers for the deviant �rm is used in the de�nition of ~cS�1. Combining with (A.45),

we therefore obtain:

~mS�1(z; q) =

�
cS�1
~cS�1

� 1
1��S

mS�1(z; q);

or

~mS�1(z; q) =

�
cS�1
~cS�1

� 1
1��S

CS�1A(n
u
S)

(1��S)(1�S)("�1)
�S

�1
q�S (z)"�1: (A.50)

In addition, the �rst-order condition of the maximization problem with respect to the transfer still

holds, using ~mS�1(z; q) and ~cS�1 instead of mS�1(z; q) and cS�1 . This yields the transfer:

~tS�1(z; q) = �S�1~cS�1
~mS�1(z; q)

q
: (A.51)

We have derived in this section solutions to the bargaining games in all tiers, consisting of

quantities of intermediate inputs, ms�1 (z; q), and payments, ts�1 (z; q), where s is the tier of

the buyer and s � 1 is the tier of the seller; see equations (A.13), (A.22), (A.30) and (A.45) for
quantities and equations (A.15), (A.24), (A.31) and (A.47) for payments. These solutions depend

on the productivity of the buyer, z, productivity of the seller, q, the number of suppliers the buyer

has, nus , and the aggregate quantity of output the buyer committed to sell to its tier-s+1 customers,

Ms (z). The payments are proportional to quantities, with the factor of proportionality varying

across tiers. And we have shown that in the symmetric case, in which z = q = 1 for all �rms, these
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equations acquire a simple recursive structure.

A2 Equilibrium Outcomes

A2.1 Quantities

From (A.30), we have

ms�1(z; q) = ~Cs�1(n
u
s )

(1��s)s�1
�s

Ms(z)

z
q�s for s 2 f2; 3; :::; S � 1g :

This can be expressed as

ms�1(z; q) = Cs�1 (n
u
s )
� 1
�s
Ms(z)

z
q�s ;

where

Cs�1 =

�
Bs
css

� s
1�s

H
� 1
�s

s�1 : (A.52)

Multiplying both sides of this equation by nds�1fs (z) and integrating over z yields

Ms�1(q) = nds�1Cs�1 (n
u
s )
� 1
�s q�s

Z 1

0

Ms(z)

z
fs(z)dz: (A.53)

It follows from this equation that we can solveMs(q) recursively, starting from tier S�1, for which
(A.45) implies

MS�1(q) = ndS�1CS�1A(n
u
S)

(1��S)(1�S)("�1)
�S

�1
HSq

�S : (A.54)

Using (A.53) and (A.54), we obtain

MS�2(z) = ndS�2CS�2(n
u
S�1)

� 1
�S�1 z�S�1

Z 1

1

MS�1(z
0)

z0
fS�1(z

0)dz0

= AndS�1n
d
S�2CS�1CS�2(n

u
S)

(1��S)(1�S)("�1)
�S

�1
(nuS�1)

�1
�S�1 z�S�1HSHS�1:

Continuing the recursion then yields

Ms(z) = AndsCs

"
S�1Y
k=s+1

ndk (n
u
k)
� 1
�k CkHk

#
(nuS)

(1��S)(1�S)("�1)
�S

�1
z�s+1HS : (A.55)

This formula extends to all s = 0; 1; :::; S � 1 for c0 = 1 and 0 = 1.

A2.2 Employment

Using the expressions for equilibrium quantities in the previous section, we obtain from (A.32) and

(A.55),
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ls(z) =

�
1� s

cs�1� s�1s

�s�1
(Hs�1)

� (1��s)(1�s)
�s (nus )

� (1��s)(1�s)
�s

Ms(z)

z
(A.56)

= ~C
s�1
s

s�1 (Hs�1)
� 1�s
�ss (nus )

� (1��s)(1�s)
�s

Ms(z)

z

=
css
Bs

Ms(z)

z

=
css
Bs

AndsCsHS

"
S�1Y
k=s+1

ndk (n
u
k)
� 1
�k CkHk

#
(nuS)

(1��S)(1�S)("�1)
�S

�1
z�s+1�1;

where B0 = 0 = 1. Multiplying both sides by �s(rs)Nsfs (z) and integrating over z provides

aggregate employment of �rms in tier s of production workers:

Ls;m =

Z 1

0
�s(rs)Nsfs (z) dz

= �s(rs)Ns
css
Bs

AndsCs

"
S�1Y
k=s+1

ndkCk

#"
S�1Y
k=s+1

(nuk)
� 1
�k Hk

#
(nuS)

(1��S)(1�S)("�1)
�S

�1
HSHs;

s 2 f0; 1; :::; S � 1g :

For s = S, (A.37) and (A.44) imply

lS(z) = A
1

"�S("�1) z
"�1

"�S("�1)

�
S("� 1)

"

� "
"�S("�1)

US (z)
(1�S)("�1)
"�S("�1) (A.57)

= A(nuS)
(1�S)("�1)(1��S)

�S H
(1�S)("�1)(1��S)

�S
S�1 z"�1

�
1

cS�1�S�1

�(1�S)("�1)
�
�
S("� 1)

"

�"�1� S
S

�(1�S)("�1)
= ACS�1HS�1

S
1� S

cS�1�S�1(n
u
S)

(1�S)("�1)(1��S)
�S z"�1:

Therefore

LS;m = �S(rS)NSACS�1HS�1HS
S

1� S
cS�1�S�1(n

u
S)

(1�S)("�1)(1��S)
�S : (A.58)

Next note that for s < S � 1, we have

Ls�1;m
Ls;m

=
�s�1(rs�1)Ns�1s�1Bscs�1Hs�1(n

u
s )
� 1
�s nds�1Cs�1

�s(rs)NssBs�1cs
:

The expressions for cs and Cs�1 imply
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Bs
css

Cs�1 = (n
u
s )

1��s
�s H�1

s�1
1� s

� s�1cs�1s
; (A.59)

and therefore

Ls�1;m
Ls;m

=
�s�1(rs�1)Ns�1n

d
s�1

�s(rs)Nsn
u
s

s�1(1� s)
s

1

� s�1Bs�1
(A.60)

=
s�1(1� s)

s

1

� s�1Bs�1
:

Moreover,

LS�1;m
LS;m

=
�S�1(rS�1)NS�1n

d
S�1

�S(rS)NSn
u
S

S�1(1� S)
SBS�1�S�1

(A.61)

=
S�1(1� S)

S

1

BS�1�S�1
:

It follows from this recursion that

Ls;m =
s�

S
s+1

S

1QS�1
j=s Bj� j

LS;m; (A.62)

where �Ss+1 =
QS
k=s+1 (1� k). Total employment in manufacturing can therefore be expressed as

Lm = CLmLS;m; (A.63)

where

CLm =

�
1� S
S

�0@ S
1� S

+
S�1X
j=1

j�
S�1
j+1QS�1

k=j Bk�k
+

�S�11

�0
QS�1
k=1 Bk�k

1A : (A.64)

Note from (A.62) that aggregate employment in tier s, s = 0; 1; :::; S � 1, is proportional
to aggregate employment in tier S. Moreover, while these factors of proportionality vary across

tiers, they do not depend on productivity distributions. This means that the same factors of

proportionality hold in the symmetric case discussed in the main text, in which all �rms have

the same productivity levels z = q = 1, as in the case of heterogeneous �rms. Finally note that

for given investment levels in protective capability and network thickness., aggregate employment

in manufacturing, Lm, is �xed, and does not depend on the distributions of productivity levels.

Therefore (A.63) and (A.64) imply that aggregate employment in tier S is also independent of

productivity distributions. In short, we �nd that in the symmetric case the aggregate employment

level in tier s, s = 0; 1; :::; S, is the same as in the case of heterogeneous �rms, independently of the

tier-speci�c productivity distributions. Naturally, in the symmetric case all �rms in a given tier

employ the same number of workers, while in the heterogeneous case employment levels within a
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tier vary across �rms with di¤erent productivity levels.

Labor market clearing implies that

L�
SX
s=0

Nsrs �
SX
s=1

�sNs�1Ns = CLmLS;m:

Using (A.58), this yields a solution to the demand shifter A,

A = CA
L�

PS
s=0Nsrs �

PS
s=1 �sNs�1Ns

CLm�S(rS)NS
(nuS)

� (1�S)("�1)(1��S)
�S (cS�1)

("�1)(1�S) ; (A.65)

where

CA = H
� (1��S)(1�S)("�1)

�S
S�1 �

(1�S)("�1)
S�1 H�1

S

�
(1� S)("� 1)

"

�S("�1)�" �S("� 1)
"

��S("�1) 1� S
S

:

In the symmetric case Hs = 1 for every tier s. Substituting these values into CA and the recursive

equations for cs and ~Cs to obtain an expression for cS�1 (see (A.40)), we obtain the value of A for

the symmetric case discussed in the text.

A2.3 Welfare

In this section, we derive an expression for equilibrium welfare. Combining equation (A.56) for

lS(z) with (A.45) and the de�nition of CS�1 in (A.46), we obtain:

xS(z) = ACS�1 (n
u
S)

"(1�S)(1��S)
�S z"H

(1�S)+�SS
�S

S (cS�1�S�1)
S

�
S

1� S

�S
= (HS�1)

(1��S)(1�S)("�1)
�S

�1
�

1

cS�1�S�1

�"�S("�1)� S
1� S

�S("�1) �(1� S)("� 1)
"

�"
�A (nuS)

"(1�S)(1��S)
�S z"H

(1�S)+�SS
�S

S (cS�1�S�1)
S

�
S

1� S

�S
= CxA (n

u
S)

"(1�S)(1��S)
�S (cS�1)

�"(1�S) z";

where

Cx =

�
1

�S�1

�"(1�S)� S
1� S

�S" �(1� S)("� 1)
"

�"
H

(1�S)+�SS
�S

S (HS�1)
(1��S)(1�S)("�1)

�S
�1

is a constant. Therefore

xS(z)
"�1
" = C

"�1
"

x A
"�1
" (nuS)

("�1)(1�S)(1��S)
�S (cS�1)

�("�1)(1�S) z"�1
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and

�Z 1

1
xS(z)

"�1
" fS(z)dz

� "
"�1

= CxAH
"

"�1
S (nuS)

"(1�S)(1��S)
�S c

�"(1�S)
S�1 :

Using (A.65) for the demand shifter A, yields

�Z 1

1
xS(z)

"�1
" fS(z)dz

� "
"�1

= CX
1

�S(rS)NS

"
L�

SX
s=0

Nsrs �
SX
s=1

�sNs�1Ns

#
(nuS)

(1�S)(1��S)
�S c

�(1�S)
S�1 ;

where

CX =
CxH

"
"�1
S CA
CLm

(A.66)

= ~CX
�
�(1�S)
S�1

S
1�S

S
1�S

+
PS�1
j=1

j�
S�1
j+1QS�1

k=j Bk�k
+

�S�11

�0
QS�1
k=1 Bk�k

;

and ~CX does not depend on f� sgS�1s=0 . This implies a welfare level

W = CX [�S(rS)NS ]
1

"�1

"
L�

SX
s=0

Nsrs �
SX
s=1

�sNs�1Ns

#
(nuS)

(1�S)(1��S)
�S c

�(1�S)
S�1 :

Finally, use the recursive structure of (A.18), (A.29) and (A.40) to obtain33

c
�(1�S)
S�1 = CK

SY
s=1

(nus )
�Ss (1��s)

�s ; (A.67)

33From the de�nition of cS�1 in (A.40) and the recursions inn cS�1 and ~CS�2,

(cS�1)
�1 / (nuS�1)

(1�S�1)(1��S�1)
�S�1 ~C

1�S�1
S�1

S�2

/ (nuS�1)
(1�S�1)(1��S�1)

�S�1 K
1�S�1
S�2 :

Continuing this recursion, we obtain

(cS�1)
�1 /

SY
s=1

(nus )
�S�1s (1��s)

�s ;

and therefore

c
�(1�S)
S�1 /

SY
s=1

(nus )
�Ss (1��s)

�s :
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where

CK = �
1�S
S�1

�
1

�0

��S1 S�1Y
`=1

[H`�1]
�S` (1��`)

�`

�
`
� `B`

��S`+1 �1� `
`

��S`
: (A.68)

Substituting (A.67) into the previous equation then yields

W = CW [�S(rS)NS ]
1

"�1

"
L�

SX
s=0

Nsrs �
SX
s=1

�sNs�1Ns

#
SY
s=1

�
�s�s�1(rs�1)Ns�1

��Ss (1��s)
�s ; (A.69)

where

CW := CXCK :

This is welfare in a market equilibrium for given investment levels in protective capabilities and

link formations, and transaction policies f� sgS�1s=0 , where the latter are embodied in the constant

CW .

A2.4 Payo¤s to Survivors

Given the solutions to the bargaining problems (without deviants) described in Section ??, we now
characterize the payo¤s of surviving �rms. From (A.28), a tier s < S supplier with productivity z

earns:

�s(z) = nds

Z 1

0
ts(z

0; z)fs+1(z
0)dz0 � cs

Ms(z)

z
for s 2 f0; 1; :::; S � 1g ;

where c0 = 1. Using (A.15), (A.24), (A.31) and (A.47), we can express this payo¤ as

�s(z) = nds

Z 1

1
�scs

ms(z
0; z)

z
fs+1(z

0)dz0 � cs
Ms(z)

z
(A.70)

= (�s � 1)cs
Ms(z)

z
:

Using (A.55) for Ms (z) then yields

�s(z) = (�s � 1)csAndsCs

24 S�1Y
j=s+1

ndjCj

3524 S�1Y
j=s+1

�
nuj
�� 1

�j Hj

35 (nuS) (1��S)(1�S)("�1)�S
�1
z�s+1�1HS :

To simplify this expression, use (A.59) to obtain

S�2Y
j=s

Cj = �
S�1
s+1

cS�1
cs

S�2Y
j=s

��
nuj+1

� 1��j+1
�j+1

1

Bj+1� j
H�1
j

�
;
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and substitute this expression into the previous equation. This delivers

�s(z) = (�s � 1)�S�1s+1 cS�1CS�1HS
HS�1
Hs

�S�1
QS�1
j=s n

d
j

� s
QS�1
j=s+1 n

u
jBj� j

A(nuS)
(1�S)(1��S)("�1)

�S
�1
z�s+1�1:

Substituting into this equation the expression for CS�1 from (A.46) and the expression for A from

(A.65), yields

�s(z) = (�s � 1)AHS
�S�1s+1

Hs
H

(1�S)(1��S)("�1)
�S

S�1 c
�("�1)(1�S)
S�1

�
1

�S�1

�"�S("�1)
�

�S�1
QS�1
j=s n

d
j

� s
QS�1
j=s+1 n

u
jBj� j

(nuS)
(1�S)(1��S)("�1)

�S
�1
z�s+1�1

�
S

1� S

�S("�1) �(1� S)("� 1)
"

�"
= (�s � 1)

�Ss+1
S

z�s+1�1

nuSHs

QS�1
j=s n

d
j

� s
QS�1
j=s+1 n

u
jBj� j

L�
PS
s=0Nsrs �

PS
s=1 �sNs�1Ns

CLm�S(rS)NS
:

In equilibrium nds�1 = �s(rs)Ns�s, and therefore

�s(z) = (�s � 1)
�Ss+1
S

z�s+1�1

Hs

1

� s
QS�1
j=s+1Bj� j

L�
PS
s=0Nsrs �

PS
s=1 �sNs�1Ns

CLm�s(rs)Ns
:

Finally, using the expression for CLm from (A.64) together with (A.58), we obtain the �nal formula

for this payo¤:

�s(z) =
Lm

�s(rs)Ns
(�s � 1)�S�1s+1

z�s+1�1

Hs� s

1QS�1
j=s+1Bj� j

(A.71)

� 1

S
1�S

+
PS�1
j=1

j�
S�1
j+1QS�1

z=j Bz�z
+

�S�11

�0
QS�1
z=1 Bz�z

:

In the case of homogeneous �rms, discussed in the main text, z = Hs = 1 and the right-hand side

of this equation simpli�es, because z�s+1�1=Hs = 1.

We also need the payo¤ of a �nal goods producer in tier S with productivity z. Using (A.38)

and the solutions of the bargaining games, we have

�S(z) = �S (z) = C�z
"�1

"�S("�1)

�
nuS

Z 1

0
mS�1

�
z; z0

��S fS�1(z0)dz0� (1�S)("�1)
�S ["�S("�1)] � TS�1 (z) ;

where

TS�1 (z) = �S�1n
u
S

Z 1

0
tS�1

�
z; z0

�
fS�1(z

0)dz0
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Substituting (A.39) and (A.45) into this equation then yields

�S(z) = �S (z) = C�A
(1�S)("�1)
"�S("�1) (nuS)

(1�S)("�1)(1��S)
�S H

(1�S)(1��S)("�1)
�S

S�1 z"�1

�
�

1

cS�1�S�1

�(1�S)("�1) �(1� S)("� 1)
"

�(1�S)("�1) �S("� 1)
"

� S("�1)2(1�S)
"�S("�1) � TS�1 (z)

= A (nuS)
(1�S)("�1)(1��S)

�S H
(1�S)(1��S)("�1)

�S
S�1 z"�1

�
�

1

cS�1�S�1

�(1�S)("�1) �(1� S)("� 1)
"

�(1�S)("�1) �S("� 1)
"

�S("�1) "� S("� 1)
"

� TS�1 (z)

= ACS�1HS�1cS�1�S�1
"� S("� 1)
("� 1)(1� S)

(nuS)
(1�S)("�1)(1��S)

�S z"�1 � TS�1 (z) :

Next, using the transfer bill (A.48), we obtain

�S(z) = ACS�1HS�1cS�1�S�1 (n
u
S)

(1�S)("�1)(1��S)
�S z"�1

�
"� S("� 1)
("� 1)(1� S)

� �S�1
�
; (A.72)

and substituting into this equation the expression for A from (A.65), we obtain

�S(z) =
Lm
CLm

1

�S(rS)NS

1

HS

1� S
S

z"�1
�
"� S("� 1)
("� 1)(1� S)

� �S�1
�
:

Finally, substituting the expression for CLm from (A.64) yields

�S(z) =
Lm

�S(rS)NS

z"�1

HS

"�S("�1)
("�1)(1�S)

� �S�1
S
1�S

+
PS�1
j=1

j�
S�1
j+1QS�1

z=j Bz�z
+

�S�11

�0
QS�1
z=1 Bz�z

: (A.73)

This is our �nal expression for the payo¤ of a surviving �nal producer with productivity z. In the

case of homogeneous �rms z = HS = 1 and the right-hand side of this equation simpli�es, because

z"�1=HS = 1.

A2.5 Ex-Ante Perceived Payo¤s

In this subsection, we derive the expected payo¤s that �rms perceive in the �rst stage of the game,

when they choose investments in protective capability and network thickness. At that point in time

all �rms in a given tier s are identical, they understand that investment in agility will determine the

probability of survival, �s (rs), and that a productivity z will be drawn from a known distribution

with density fs (z). All �rms form rational expectations when making decisions about rs and �s.

We derived in Section A1 the solutions to all bilateral bargaining games, where every �rm in

tier s chooses the same investment in links, �s, as well as a solution to an o¤-equilibrium bargaining
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game in which all �rms except for a deviant choose �s while the deviant �rm chooses ~�s 6= �s. Such

a deviant has a di¤erent number of suppliers in tier s � 1 compared to the other �rms in tier s.
For s 2 f1; 2; :::; S� 1g, the quantity sold by a deviant �rm in tier s with productivity q to a buyer

with productivity z in tier s+ 1 is represented by (A.34), which we reproduce as

~ms(z; q) =

�
1� s+1
� ss+1

�s+1
(~cs)

� 1
1��s+1 (cs)

� s+1(1��s+1)�1
1��s+1

� (Hs)
s+1(1��s+1)�1

�s+1 (nus+1)
s+1(1��s+1)�1

�s+1
Ms+1(z)

z
q�s+1 ;

where cs is de�ned in (A.29) and ~cs is de�ned in (A.36). When ~cs = cs, i.e., ~nus = nus , this equation

yields ~ms(z; q) = ms(z; q), the solution to the bargaining game for a non-deviant �rm. Therefore

~ms(z; q) =

�
cs
~cs

� 1
1��s+1

ms(z; q);

and from (A.35),

~ts(z; q) = �s~cs
~ms(z; q)

q
:

Using these equations, the payo¤ to a surviving deviant with productivity z is

~�s = nds

Z 1

0

�
~ts(z

0; z)� ~cs
~ms(z

0; z)

z

�
fs+1(z

0)dz0

= (�s � 1)nds~cs
Z 1

0

~ms(z
0; z)

z
fs+1(z

0)dz0

= (�s � 1)nds
Z 1

0

�
cs
~cs

� 1
1��s+1

~cs
ms(z

0; z)

z
fs+1(z

0)dz0

= (�s � 1) (cs)
1

1��s+1
Ms(z)

z
(~cs)

� �s+1
1��s+1 :

From (A.36), ~cs is proportional to

(~nus )
(1��s)(1�s)

�s =
�
~�s�s�1(rs�1)Ns�1

� (1��s)(1�s)
�s :

It follows that

~�s = ~�s(z; ~�s) := ~Q�s(z)(~�s)
(1��s)(1�s)�s+1

�s(1��s+1) = ~Q�s(z)(~�s)
(1�s)(�s+1�1)

�s�1 ;

where ~Q�s(z) depends on the �rm�s productivity but does not depend on its investment in network

thickness. ~�s. Ex-ante, �rms do not know z, and therefore their expected payo¤ is

~�s(~�s) := Es [~�s(z; ~�s)] = Q�s(~�s)
(1�s)(�s+1�1)

�s�1 ; s 2 f1; 2; :::; S � 1g; (A.74)
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where Q�s := Es
h
~Q�s(z)

i
.34

Firms in tier 0 make no network choices. A �rm in tier 0 anticipates a payo¤ �0(z) if it draws

productivity z, as described in (A.71). Therefore its expected payo¤ is

�0 : = E0 [�0(z)] =
Lm

�s(rs)Ns
(�s � 1)�S�1s+1

1

� s

1QS�1
j=s+1Bj� j

(A.75)

� 1

S
1�S

+
PS�1
j=1

j�
S�1
j+1QS�1

z=j Bz�z
+

�S�11

�0
QS�1
z=1 Bz�z

:

Finally, replacing nuS with ~n
u
S in (A.72), we obtain the payo¤ of a deviant �rm in tier S with a

productivity draw z; that is

~�S(z) = ACS�1HS�1cS�1�S�1 (~n
u
S)

(1�S)("�1)(1��S)
�S z"�1

�
"� S("� 1)
("� 1)(1� S)

� �S�1
�
:

Since ~nuS is proportional to ~�S , this �rm�s expected payo¤ can be expressed as

~�S(~�S) := ES [~�S(z)] = Q�S (~�S)
(1�S)("�1)(1��S)

�S ; (A.76)

where the constant Q�S does not depend on ~�S .
35

Our representation of the expected payo¤s �0, ~�s(~�s) and ~�S(~�S) apply to di¤erent productivity

distributions, including the case of homogeneous �rms with z = 1 for all. Di¤erent distributions of

z impact the constants in these equations, such as Q�s and Q�S . Therefore they a¤ect the levels

of investment in protective capability and network thickness., but, as we show below, they have no

impact on optimal policies.

A3 First-Best

The social planner maximizes utility subject to resource constraints. The utility is

34A simple way to recover Qvs is to note that evaluated at ~�s = �s, Qvs(~�s)
(1�s)(�s+1�1)

�s�1 equals Es [vs(z)], where
vs (z) is given in (A.71). In other words,

Qvs = Es [vs(z)] (�s)
�
(1�s)(�s+1�1)

�s�1 :

35This constant can be recovered by equating QvS (~�S)
(1�S)("�1)(1��S)

�S , evaluated at ~�S = �S , with ES [vS(z)],
where vS (z) is given in (A.73). In other words,

QvS = ES [vS(z)] (�S)
� (1�S)("�1)(1��S)

�S :
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W =

�
�S(rS)NS

Z 1

0
xS(z)

"�1
" fS(z)dz

� "
"�1

: (A.77)

Equation (A.1) together with the solutions to the bargaining games between a �nal goods producer

with productivity z and its suppliers imply the production constraint

xS(z) = zlS(z)
S
�
�S�1(rS�1)NS�1�S

� 1�S
�S

�Z 1

0
mS�1 (z; q)

�S fS�1(q)dq

� 1�S
�S

: (A.78)

In addition, the planner faces a resource constraint

L = LS;m +

S�1X
s=0

Ls;m +

SX
s=0

Nsrs + k

SX
s=1

�sNs�1Ns; (A.79)

where

Ls;m = �s(rs)Ns

Z 1

0
ls(z)fs(z)dz for s 2 f0; 1; :::; Sg;

and

ls(z) =

�
�s+1�s+1(rs+1)Ns+1

1

z

Z 1

0
ms(z

0; z)fs+1(z
0)dz0

� 1
s

�
�
�s�s�1(rs�1)Ns�1

Z 1

0
ms�1 (z; q)

�s fs�1(q)dq

�� 1�s
�ss

;

l0(z) = �1�1(r1)N1
1

z

Z 1

0
m0(q; z)f1(q)dq:

The social planner chooses frs; �sg, fls(z)g and fms(z; z
0)g for all z, z0 and s, to maximize welfare

subject to these constraints.

To simplify the exposition, substitute ls(z) into the equation for Ls;m for s = 0; 1; :::; S� 1, and
the resulting Ls;m functions into the labor constraint (A.79), to obtain a single constraint. Next,

substitute xS (z) into the objective function W . We can then form a Lagrangian for maximizing W

subject to a single constraint; that is, the labor constraint. In this problem the choice variables are

frs; �sg, flS (z)g and fms(z; z
0)g, and we can use pointwise optimization for the choices of flS (z)g

and fms(z; z
0)g for s = 0; 1; :::; S � 1.

Letting ! denote the Lagrangian multiplier of the single labor constraint, and denoting by an

asterisk the optimal value of a variable, the �rst-order condition for lS (z) yields

S (W
�)

1
" x�S(z)

"�1
"

l�S(z)
= !� for all z; (A.80)

while the �rst-order condition for mS�1(z; q) yields
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(W �)
1
" �S(r

�
S)NSx

�
S(z)

"�1
" (1� S)m�

S�1(z; q)
�S�1R1

0 m�
S�1 (z; z

0)�S fS�1(z0)dz0
(A.81)

=
!�S�1(r

�
S�1)NS�1

1
S�1

l�S�1(q)R1
0 m�

S�1(z
0; q)fS(z0)dz0

for all z and q:

Combining (A.80) with (A.81) we obtain

1
S
l�S(z)�S(r

�
S)NS(1� S)m�

S�1(z; q)
�S�1R1

0 m�
S�1 (z; z

0)�S fS�1(z0)dz0
(A.82)

=
�S�1(r

�
S�1)NS�1

1
S�1

l�S�1(q)R1
0 m�

S�1(z
0; q)fS(z0)dz0

for all z and q:

Next, the �rst-order condition with respect to ms(z; q) for s 2 f1; 2; :::; S � 2g yields

1
s
�s(r

�
s)Nsl

�
s(q)R1

0 m�
s(z

0; q)fs+1(z0)dz0
(A.83)

=
1� s+1
s+1

�s+1(r
�
s+1)Ns+1

l�s+1(z)m
�
s(z; q)

�s+1�1R1
1 m�

s (z; z
0)�s+1 fs(z0)dz0

for all z and q;

and the �rst-order condition with respect to m0(z; q) yields

�0(r
�
0)N0�

�
1

1

q
=
1� 1
1

l�1(z)
m�
0(z; q)

�1�1R1
0 m�

0 (z; z
0)�1 f0(z0)dz0

for all z and q: (A.84)

From the production function in tier 1 and x1 (z) =M1 (z) (see (A.1)), we obtainZ 1

0
m�
0

�
z; z0

��1 f0(z0)dz0 = �M�
1 (z)

z

� �1
1�1

l�1(z)
� 1�1
1�1 :

Substituting this equation into (A.84) then yields

m�
0(z; q) =

�
1� 1
1

q

� 1
1��1

l�1(z)
1�1(1��1)
(1�1)(1��1)

�
M�
1 (z)

z

�� �1
(1��1)(1�1)

: (A.85)

Substituting this equation into

l�1(z) =

�
M�
1 (z)

z

� 1
1

U�1 (z)
1�1
1

where U1(z) is de�ned in (A.4) (which results from the production function (A.1)), we obtain:
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l�1(z) =

�
1

1� 1

�1�1
(H0)

� (1��1)(1�1)
�1 [��1�0(r

�
0)N0]

� (1��1)(1�1)
�1

M�
1 (z)

z
: (A.86)

Next, substituting this result into (A.85) yields

m�
0(z; q) =

�
1� 1
1

�1
(H0)

(1��1)1�1
�1 [��1�0(r

�
0)N0]

(1��1)1�1
�1 q�1

M�
1 (z)

z
: (A.87)

This is the optimal quantity required to supply to a �rm in tier 1 with productivity z by a �rm in

tier 0 with productivity q.

We next solve m�
1(z; q). Substituting l

�
1(q)=M

�
1 (q) from (A.86) into the �rst-order condition

(A.83), we obtain

m�
1(z; q) =

�
1� 2
c�12

� 1
1��2

l�2(z)
1�2(1��2)
(1�2)(1��2)

�
M�
2 (z)

z

�� �2
(1��2)(1�2)

q
1

1��2 (A.88)

where

(c�1)
�1 = 1

�
1� 1
1

�1�1
(H0)

(1��1)(1�1)
�1 [��1�0(r

�
0)N0]

(1��1)(1�1)
�1 :

Now substitute (A.88) into

l�2(z) =

�
M�
2 (z)

z

� 1
2

U�2 (z)
2�1
2 ;

where U2(z) is de�ned in (A.4) to obtain

l�2(z) =

�
1� 2
c�12

�2�1
(H1)

� (1��2)(1�2)
�2 [��2�1(r

�
1)N1]

� (1��2)(1�2)
�2

M�
2 (z)

z
: (A.89)

Finally, substituting (A.89) into (A.88) yields

m�
1(z; q) =

�
1� 2
c�12

�2
(H1)

(1��2)2�1
�2 [��2�1(r

�
1)N1]

(1��2)2�1
�2 q�2

M�
2 (z)

z
: (A.90)

Proceeding in similar fashion to solve m�
s(z; q) for tiers s 2 f1; 2; :::; S � 2g, we obtain

m�
s(z; q) =

�
1� s+1
c�ss+1

�s+1
(Hs)

(1��s+1)s+1�1
�s+1 (A.91)

�
�
��s+1�s(r

�
s)Ns

� (1��s+1)s+1�1
�s+1 q�s+1

M�
s+1(z)

z
;

where

(c�s)
�1 = s

�
1� s
c�s�1s

�1�s
(Hs�1)

(1��s)(1�s)
�s

�
��s�s�1(r

�
s�1)Ns�1

� (1��s)(1�s)
�s ; (A.92)
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and

l�s+1(z) =

�
1� s+1
c�ss+1

�s+1�1
(Hs)

� (1��s+1)(1�s+1)
�s+1 (A.93)

�
�
��s+1�s(r

�
s)Ns

�� (1��s+1)(1�s+1)
�s+1

M�
s+1(z)

z
:

Finally, we solve m�
S�1(z; q). Combining (A.82) and

l�S�1(z) =

�
M�
S�1(z)

z

� 1
2

U�S�1(z)
2�1
2

as we have done above, yields

m�
S�1(z; q)

1��S =
1� S
S

S�1
l�S(z)

�S�1(r
�
S�1)NS�1�

�
S

R1
0 m�

S�1 (z; z
0)�S fS�1(z0)dz0

M�
S�1(q)

l�S�1(q)
: (A.94)

To complete the solution of the optimal allocation, note that aggregate employment by �nal

good producers is

LS;m = �S(rS)NS

Z 1

0
lS(z)fS(z)dz:

Substituting l�S (z) from the �rst-order condition (A.80) into this equation yields

L�S;m = (!
�)�1 S (W

�)
1
" �S(r

�
S)NS

Z 1

0
x�S(z)

"�1
" fS(z)dz:

Using this equation and the de�nition of welfare in (A.77), aggregate employment in tier S can be

expressed as

L�S;m = (!
�)�1 SW

�: (A.95)

Together with (A.80), this yields

l�S(z) = (!�)�1 S (W
�)

1
" x�S(z)

"�1
"

= C�lSx
�
S(z)

"�1
" ;

where

C�lS := L�S;m (W
�)

1�"
" : (A.96)

Substituting the production function (A.78) into this equation we obtain a solution for the employ-

ment level
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l�S(z) =
�
C�lS
� "
"�S("�1) z

"�1
"�S("�1) (A.97)

�
�
��S�S�1(r

�
S�1)NS�1

Z 1

0
m�
S�1 (z; z)

�S fS�1(z
0)dz0

� (1�S)("�1)
�S ["�S("�1)]

:

Next substitute (A.97) together with the solution of l�S�1(q)=M
�
S�1(q) from (A.93) into (A.94), to

obtain

m�
S�1(z; q)

1��S =
1� S
S

q
�
c�S�1

��1 �
C�lS
� "
"�S("�1) z

"�1
"�S("�1) (A.98)

�
�
��S�S�1(r

�
S�1)NS�1

Z 1

0
m�
S�1 (z; z)

�S fS�1(z
0)dz0

� (1�S)("�1)
�S ["�S("�1)]

�1
;

which, using the de�nition of US(z) in (A.4), can be expressed as

m�
S�1(z; q) = (c�S�1)

� 1
1��S q

1
1��S

�
1� S
S

� 1
1��S

(C�lS )
"

(1��S)["�S("�1)] (A.99)

�z
"�1

(1��S)["�S("�1)]U�S(z)
(1�S)("�1)(1��S)��S
(1��S)["�S("�1)]

Raising both sides of this equation to the power �S , multiplying by n
u;�
S , applying the operator

ES�1 to both sides and raising the outcomes of both sides to the power 1=�S , yields

U�S(z) = H
1
�S
S�1

�
1� S
c�S�1S

� 1
1��S

(C�lS )
"

(1��S)["�S("�1)]
�
nu;�S

� 1
�S

�z
"�1

(1��S)["�S("�1)]U�S(z)
(1�S)("�1)(1��S)��S
(1��S)["�S("�1)] :

This equation provides the solution

U�S(z) = H

(1��S)["�S("�1)]
�S

S�1

�
1� S
c�S�1S

�"�S("�1)
(C�lS )

" (A.100)

�z"�1(nu;�S )
(1��S)["�S("�1)]

�S :

Finally, substituting (A.100) into (A.99), we obtain the solution of the optimal transaction quantity

between a buyer in tier S with productivity z and a supplier in tier S � 1 with productivity q:

m�
S�1(z; q) = C�S�1(n

u;�
S )

(1��S)(1�S)("�1)
�S

�1
q�Sz"�1; (A.101)
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where

C�S�1 =

�
1� S
S

�"�S("�1)
[HS�1]

(1��S)(1�S)("�1)
�S

�1 �
C�lS
�" �

c�S�1
��["�S("�1)]

Finally, using (A.97), we obtain the employment levels of �rms with varying productivity levels

l�S(z) =
�
C�lS
� "
"�S("�1)

�
C�S�1

� (1�S)("�1)
"�S("�1) (HS�1)

(1�S)("�1)
�S ["�S("�1)]

�
nu;�S

� (1�S)("�1)(1��S)
�S (z)"�1 (A.102)

=
�
C�lS
�"� 1� S

c�S�1S

�(1�S)("�1)
H

(1��S)("�1)(1�S)
�S

S�1
�
nu;�S

� (1�S)("�1)(1��S)
�S (z)"�1

= C�S�1
c�S�1S
1� S

HS�1
�
nu;�S

� (1�S)("�1)(1��S)
�S (z)"�1 :

We have so far derived optimal transaction levels between �rms in adjacent tiers as functions

of their productivity levels, and optimal employment levels of �rms in di¤erent tiers as functions

of productivity levels. The solution to m�
s�1 (z; q), i.e., the supply of inputs by a �rm in tier

s � 1 with productivity q to a �rm in tier s with productivity z, also depends on the optimal

aggregate production and sales of the �rm in tier s, M�
s (z). Therefore, in order to complete the

solution we need solutions to fM�
s (z)g, which we provide next. Note, however, that our formulas

hold for arbitrary distributions of productivity, including the case of homogeneous �rms where

z = q = 1 = Hs for all �rms and all tiers. In this case M�
s = nd;�s m�

s�1 is the same for every

�rm in tier s and m�
s�1 represents the supply of inputs by a tier-s � 1 �rm to a tier-s �rm. In

this case our formulas represent a recursive system in m�
s�1 that provides a complete solution to

the optimal transaction levels. For the heterogeneous case we can derive a recursive system in

the values of M�
s (z) in order to obtain solutions to fM�

s (z)g. Once these solutions are available,
we can substitute them into the equations for m�

s�1 (z; q) in order to obtain �nal solutions to the

�rm-to-�rm transaction levels.

Using (A.87), (A.91) and (A.92), we obtain

m�
s(z; q) = C�s

�
nu;�s+1

�� 1
�s+1 q�s+1

M�
s+1(z)

z
for s 2 f0; 1; :::; S � 2g ; (A.103)

where

C�s :=

�
1

c�s+1s+1

� s+1
1�s+1

H
� 1
�s+1

s :

Next, substituting (A.101) into

M�
S�1(z) = nd;�S�1

Z 1

0
m�
S�1(z; q)fS�1 (q) dq;

we obtain

M�
S�1(z) = C�S�1n

d;�
S�1z

�S (nu;�S )
(1��S)(1�S)("�1)

�S
�1
HS : (A.104)
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To iterating further, substitute (A.103) for s = S � 2 into

M�
S�2(z) = nd;�S�2

Z 1

0
m�
S�2(z; q)fS�2 (q) dq;

and substitute (A.104) into the result to obtain

M�
S�2(z) = C�S�1C

�
S�2n

d;�
S�1n

d;�
S�2(n

u;�
S )

(1��S)(1�S)("�1)
�S

�1 �
nu;�S�1

�� 1
�S�1 HSHS�1z

�S�1 :

Continuing this recursion, we get

M�
s (z) = z�s+1(nu;�S )

(1��S)(1�S)("�1)
�S

�1
S�1Y
j=s+1

�
nu;�j

�� 1
�j (A.105)

�
S�1Y
j=s

C�j n
d;�
j Hj+1 for s 2 f0; 1; :::; S � 2g :

Together with (A.104), this equation provides a solution to the aggregate production and sales of

every type of �rm in every tier. To obtain these variable in the symmetric case, we substitute into

these equations z = Hs = 1 for all �rms and all tiers.

Next, use the labor formulas, such as (A.93), together with the above formulas for M�
s (z), to

obtain the solutions

l�s(z) = c�ssz
�s+1�1(nu;�S )

(1��S)(1�S)("�1)
�S

�1
S�1Y
j=s+1

�
nu;�j

�� 1
�j (A.106)

�
S�1Y
j=s

C�j n
d;�
j Hj+1 for s 2 f0; 1; :::; S � 1g

and

L�s;m = �s(r
�
s)Nsc

�
ss(n

u;�
S )

(1��S)(1�S)("�1)
�S

�1
S�1Y
j=s+1

�
nu;�j

�� 1
�j (A.107)

�HS
S�1Y
j=s

C�j n
d;�
j Hj for s 2 f0; 1; :::; S � 1g :

Therefore
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L�s�1;m
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Moreover, from (A.102) we obtain:

L�S;m = �S(r
�
S)NSC

�
S�1

c�S�1S
1� S

�
nu;�S

� (1�S)("�1)(1��S)
�S HSHS�1

and therefore

L�S�1;m
L�S;m

=
�S�1(r

�
S�1)NS�1

�S(r
�
S)NS

S�1
nd;�S�1
nu;�S

1� S
S

(A.109)

=
1� S
S

S�1:

Note that optimal relative employment levels across tiers depend only on the Cobb-Douglas

coe¢ cients of the production functions, which are exogenous. Together with the labor constraint

(A.79), these ratios imply

L�S;m = S

"
L�

SX
s=0

Nsr
�
s � k

SX
s=1

��sNs�1Ns

#
: (A.110)

In other words, the �nal good producers employ a fraction S of manufacturing labor and producers

of intermediate goods in every tier s < S also employ �xed fractions. For example, (A.109) and

(A.110) imply that aggregate labor use in tier S � 1 is a fraction (1� S) S�1 of manufacturing
employment. Using (A.96), (A.110) and the de�nition of W in (A.77), we obtain

C�lS =
S

h
L�

PS
s=0Nsr

�
s � k

PS
s=1 �

�
sNs�1Ns

i
�S(r

�
S)N

�
S

R1
1 x�S(z)

"�1
" fS(z)dz

:

Together with the production function (A.1) and the solutions tom�
S�1(z; q) this provides a solution

to C�lS as a function of the investment levels fr
�
sg and f��sg.

Next, consider the social planner�s choice of protective capability and network formation. The

�rst-order condition with respect to r�S is

"

"� 1W
��

0
S(r

�
S)r

�
S

�S(r
�
S)

= !�
�
�0S(r

�
S)r

�
S

�0S(r
�
S)

L�S;m +
1

S�1

�0S(r
�
S)r

�
S

�0S(r
�
S)

L�S�1;m +NSr
�
S

�
:

Combining with (A.95) and (A.109), this yields
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The �rst-order condition with respect to r�s for s < S is

�0s(r
�
s)r

�
s

�s(r
�
s)

�
L�s;m +

1

s�1
L�s�1;m �

1� s+1
�s+1s+1

L�s+1;m

�
= Nsr

�
s ;

which together with (A.108), (A.109) and (A.110) implies

�Ss+1(1� �s+1)
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�0s(r
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�s(r
�
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=
Nsr

�
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s=1 �

�
sNs�1Ns

: (A.112)

Using a similar approach, the �rst-order conditions with respect to ��s for s 2 f1; 2; :::; Sg imply

(1� S)(1� �S)
�S

=
kNS�1NS�

�
S

L�
P
s=0Nsr

�
s � k

P
s=1 �
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(A.113)

�Ss+1(1� �s+1)
�s+1

=
kNsNs+1�

�
s+1

L�
PS
s=0Nsr

�
s � k

P
s=1 �

�
sNs�1Ns

for s = f0; 1; :::; S � 2g : (A.114)

Note that(A.111)-(A.114) provide solutions to the optimal investment levels and these solutions do

not depend on the degree of productivity heterogeneity in the various tiers. For this reason they

also represent the solutions for the homogeneous case.

A4 First-Best Policies

We have characterized the optimal allocation in the previous section. We now show that there is a

set of policies that implement this allocation.

First note that optimal subsidies to transactions can be derived from a comparison of the

equilibrium allocation of labor to tiers, given by (A.60) and (A.61), with the optimal allocation

of labor to tiers, given by (A.108) and (A.109). This comparison yields the �rst-best transaction

subsidies

��s =
1

Bs
for s 2 f1; 2; :::; S � 1g; (A.115)

��0 = 1; (A.116)

where, recall,

Bs = �s�1(1� s) + s > 1;

�s�1 = �s + (1� �s)
�s

�s � 1
> 1:
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While these subsidies secure the optimal allocation of labor to tiers, the remaining question is

whether they also secure the optimal allocation of labor across �rms with di¤erent productivity

levels within tiers. In the homogeneous case this is not an issues, because within a tier all �rms

have the same productivity.

For �rms with varying productivity levels, (A.2), (A.86) and (A.93) imply that the ratio of

optimal employment levels by �rms with productivities z and z0 is

l�s (z)

l�s (z
0)
=
M�
s (z) z

0

M�
s (z

0) z
; for s 2 f0; 1; 2; :::; S � 1g:

However, (A.104) and (A.105) imply that

M�
s (z) z

0

M�
s (z

0) z
=
� z
z0

��s+1�1
; for s 2 f0; 1; 2; :::; S � 1g:

It follows that the optimal allocation of labor across �rms in a given tier s depends on the ratio

of their productivity levels and the elasticity of substitution across inputs of the �rms in the tier

above them.

Next note from (A.2) and the equilibrium allocation of labor across �rms in a given tier s,

(A.32), that
ls (z)

ls (z0)
=
Ms (z) z

0

Ms (z0) z
; for s 2 f0; 1; 2; :::; S � 1g;

while from (A.55),
Ms (z) z

0

Ms (z0) z
=
� z
z0

��s+1�1
; for s 2 f0; 1; 2; :::; S � 1g:

Therefore in equilibrium the relative labor use of �rms in a given tier s is the same as in the

optimal allocation. Since the transaction subsidies (A.115) and (A.116) ensure optimal aggregate

employment in every tier, these policies also ensure the optimal distribution of these employment

levees across �rm within the tiers.

We next turn to subsidies for investment in protective capability and link formation. A tier-s

�rm chooses

(rs; �s) = argmax
~rs;~�s

�s (~rs) ~�s(~�s)� �s~rs � #sk~�sNs�1 for s 2 f1; 2; :::; Sg (A.117)

and

r0 = argmax
~r0

�0 (~r0)�0 � �0~r0 for s = 0;

where the expressions for �0 and ~�s(~�s), s = 1; 2; :::; S, are given by (A.74)-(A.76). The �rst-order

conditions for the choice of protective capabilities are therefore

�0s(rs)~�s(�s) = �s for s 2 f0; 1; 2; :::; Sg ; (A.118)

where ~�s (~�s) is evaluated at the equilibrium level of links, ~�s = �s, and ~�0(�0) := �0. From the
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equilibrium values of �s (z) in (A.71) and (A.73), we obtain

~�s(�s) = Es [�s(z)] =
Lm

�s(rs)Ns
(�s � 1)�S�1s+1

1

� s

1QS�1
j=s+1Bj� j

(A.119)
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; (A.120)

where, recall,

Lm = L�
SX
s=0

Nsrs � k
SX
s=1

�sNs�1Ns

is manufacturing employment. To implement the optimal allocation, the planner uses optimal

transaction subsidies ��s, which satisfy Bs�
�
s = 1 for all tiers, with B0 = 1. In this case ~�s(�s) and

~�S(�S) become

~�s(�s) = Es [�s(z)] =
Lm

�s(rs)Ns
(�s � 1)�Ss+1Bs for s 2 f1; 2; :::; S � 1g ; (A.121)

~�S(�S) = ES [�S(z)] =
Lm

�S(rS)NS

�
"� S("� 1)
("� 1)(1� S)

� �S�1
�
(1� S) : (A.122)

Substituting these equations into the �rst-order conditions (A.118), and recalling that �s = �s+1+�
1� �s+1

�
�s+1= (�s+1 � 1) and �s = 1= (1� �s), we obtain

�Ss+1�
0
s(rs)rs
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� �S�1
�
(1� S) =

�SrSNS

L�
PS
s=0Nsrs � k

PS
s=1 �sNs�1Ns

:

Comparing the �rst of these equations, for s 2 f0; 1; 2; :::; S � 1g, to the optimum condition (A.112),
we �nd that the optimal policy is

��s =
1� �s+1

��s
for s 2 f0; 1; :::; S � 1g: (A.123)

And comparing the second of these conditions, for s = S, to the optimum condition (A.111), we

�nd that

��S = 1�
(1� �S)(1� S)("� 1)

�S � 1
: (A.124)
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These optimal policies apply to all productivity distributions. They therefore also apply to the

case of homogeneous productivities. Since �S > ", (A.124) implies ��S 2 (0; 1). That is, it is

optimal to subsidize investment in the protective capabilities of �nal goods producers. As for

manufacturers of intermediate inputs, (A.123) implies ��0 2 (0; 1), because ��0 = 1, so that it is also
optimal to subsidize investment in the protective capabilities of the most upper tier �rms. But

for �rms in intermediate tiers, i.e., s = 1; 2; :::; S � 1, it is optimal to subsidize investment in the
protective capabilities of �rms in tier s if and only if

�
1� �s+1

�
Bs < 1. In other words, there may

exist tiers in which the optimal policy is to tax investment in their protective capabilities, because�
1� �s+1

�
Bs > 1.

Now consider subsidies to investment in link formation, f#sgSs=1. For �rms in tier s, s 2
f1; 2; :::; S � 1g, (A.117) provides a solution for the choice of ~�s. Using (A.74), the �rst-order
condition yields

�s(rs)
(1� s)(�s+1 � 1)

�s � 1
~�s(�s)

�s
= #skNs�1;

where rs and �s are the equilibrium choices. Together with the �rst-order condition for rs, given

by (A.118), this yields
rs
�s
=
#s
�s
kNs�1

�s � 1
(1� s)(�s+1 � 1)

�0s(rs)rs
�s(rs)

: (A.125)

Next, substituting into this equation the condition for an optimal choice of rs, given by (A.112),

to obtain a condition that has to be satis�ed by the optimal policies ��s and #
�
s:
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:

However, from (A.114) we have

�Ss (1� �s)
�s

=
k��sNs�1Ns

L�
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s=0Nsr

�
s � k

P
s=1 �

�
sNs�1Ns

;

and the last two equations imply

#�s = ��s =
1� �s+1

��s
for s 2 f1; 2; :::; S � 1g:

Using (A.76), for a �rm in tier S the solution to the maximization problem (A.117) yields the

�rst-order condition

�S(rS)
(1� S)("� 1) (1� �S)

�S

~�s(�s)

�S
= #SkNS�1:

Combining with (A.118), this can be expressed as

�S(rS)

�0S(rS)rS

(1� S)("� 1) (1� �S)
�S

�SrSNS = #Sk�SNS�1NS :
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Now substitute into this equation the condition for an optimal choice of rS , given by (A.111), to

obtain

(1� S) (1� �S)
�S

��S =
#�S�

�
SNS�1NS

L�
PS
s=0Nsr

�
s � k

PS
s=1 �

�
sNs�1Ns

:

Finally, substituting into this equation the condition for an optimal choice of �S , (A.113), we obtain

#�S = ��S = 1�
(1� �S)(1� S)("� 1)

�S � 1
:

In summary, in every tier the �rst-best subsidy to investment in link formation is the same as the

�rst-best subsidy to investment in protective capabilities.

A5 Second-Best Policies

In this section, we characterize the second-best policies for protective capabilities and link forma-

tions, f��sgSs=0 and f#�sgSs=1 respectively. In the second-best world the policy maker cannot use
transaction subsidies, so that ��s = 1 in every tier s.

Equilibrium welfare is represented by (A.69), which we reproduce here for convenience:

W = CW [�S(rS)NS ]
1

"�1

 
L�

SX
s=0

Nsrs �
SX
s=1

�sNs�1Ns

!
SY
s=1

�
�s�s�1(rs�1)Ns�1

��Ss (1��s)
�s :

Recall that this equation holds for arbitrary values of transaction subsidies, f� sgS�1s=0 , which are

embodied in the constant CW . In the �rst-best the transaction subsidies are f��sgS�1s=0 , while in the

second-best they all equal one. In both cases the planner chooses frsgSs=0 and f�sgSs=1 to maximize
this welfare function. It follows that the second-best investment levels are the same as the �rst-best

investment levels. That is,

r�s = r�s for s 2 f0; 1; :::; Sg ;

and

��s = ��s for s 2 f1; 2; :::; Sg :

This implies that conditions (A.111)-(A.114) are satis�ed in the second-best allocation.36

While the optimal investment levels are the same in the �rst- and second-best, the policies that

implement them di¤er. The di¤erence arises from the fact that the ex-ante expected payo¤s of

the �rms di¤er in these regimes. Whereas (A.119) and (A.120) imply (A.121) and (A.122) in the

�rst-best, in the second-best they imply

36Note also that we can obtain the optimal transaction subsidies by choosing f�sgS�1s=0 that maximize CW = CXCK ,
where CX is de�ned in (A.66) and CK is de�ned in (A.68).
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where37
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�S1QS�1
s=1 Bs

< 1:

Following the steps we used in the analysis of the �rst-best policies, we now obtain
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; (A.128)
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: (A.130)

These policy measures can be subsidies or taxes for tiers s 2 f1; 2; :::; Sg, but they imply that
protective capabilities have to be subsidized in tier 0. This can be seen from

J
S�1Y
s=1

Bs = S

S�1Y
s=1

Bs +
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j=1

j�
S
j+1

j�1Y
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S
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j�
S
j+1 + �

S
1 = 1:

Therefore, ��0 < 1.

37Note that
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S
1 = 1;

because Bs > 1 for every s.
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